A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting thalassemia using deep neural network based on red blood cell indices. | LitMetric

Predicting thalassemia using deep neural network based on red blood cell indices.

Clin Chim Acta

The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, 511518 Qingyuan, China. Electronic address:

Published: March 2023

Background And Objective: The traditional statistical screening method for thalassemia based on red blood cell (RBC) indices is being replaced by machine learning. Here, we developed deep neural networks (DNNs) that outperformed the traditional method for predicting thalassemia.

Method: Using a dataset of 8693 records comprising genetic tests and other 11 features we constructed 11 DNN models and 4 traditional statistical models and then compared their performances and analysed feature importance for interpreting DNN models.

Results: The area under the receiver operating characteristic curve, accuracy, Youden's index, F1 score, sensitivity, specificity, positive predictive value and negative predictive value, were 0.960, 0.897, 0.794, 0.897, 0.883, 0.911, 0.914, and 0.882, respectively, for our best model, and compared with the traditional statistical model based on the mean corpuscular volume, these values were increased by 10.22%, 10.09%, 26.55%, 8.92%, 4.13%, 16.90%, 13.86% and 6.07%, respectively, and by 15.38%, 11.70%, 31.70%, 9.89%, 3.05%, 22.13%, 17.11% and 5.94%, respectively, for the mean cellular haemoglobin model. The DNN model performance will reduce without age, RBC distribution width (RDW), sex, or both WBC and PLT.

Conclusions: Our DNN model outperformed the current screening model. In 8 features, RDW and age were the most useful, followed by sex and the combination of WBC and PLT, the remaining nearly useless.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cca.2023.117329DOI Listing

Publication Analysis

Top Keywords

traditional statistical
12
deep neural
8
based red
8
red blood
8
blood cell
8
dnn model
8
model
6
predicting thalassemia
4
thalassemia deep
4
neural network
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!