Regulation of calcium ions on the interaction between amphotericin B and cholesterol-rich phospholipid monolayer in LE phase and LC phase.

Biophys Chem

Xi'an Key Laboratory of Human-Machine Integration and Control Technology for Intelligent Rehabilitation, Xijing University, Xi'an 710123, PR China. Electronic address:

Published: June 2023

Amphotericin B, as a "gold standard", is used to treat invasive fungal infections. The AmB molecule can bind easily to cholesterol and damage cell membranes, so it produces the toxicity on cell membrane, which limits its clinical dose. However, the interaction between AmB and cholesterol-rich membrane is unclear now. The phase state of the membrane and the metal cation outside cell membrane may affect the interaction between AmB and the membrane. In this work, the effects of amphotericin B on the mean molecular area, elastic modulus and stability of mammalian cell membrane rich in cholesterol in the presence of Ca ions were studied using DPPC/Chol mixed Langmuir monolayer as a model. The Langmuir-Blodgett method and AFM test were used to study the effects of this drug on the morphology and height of cholesterol-rich phospholipid membrane in the presence of Ca ions. The influence of calcium ions on the mean molecular area and the limiting molecular area was similar in LE phase and in LC phase. The calcium ions made the monolayer more condensed. However, calcium ions can weaken the shortening effect of AmB on the relaxation time of the DPPC/Chol mixed monolayer in LE phase but enhance it in LC phase. Interestingly, calcium ions caused a LE-LC coexistence phase to occur in the DPPC/Chol/AmB mixed monolayers at 35mN/m, which was confirmed by atomic force microscopy. The results can help to understand the interaction between amphotericin B and cell membrane rich in cholesterol in the calcium ions environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2023.107012DOI Listing

Publication Analysis

Top Keywords

calcium ions
24
cell membrane
16
molecular area
12
ions
8
interaction amphotericin
8
cholesterol-rich phospholipid
8
phase
8
monolayer phase
8
phase phase
8
membrane
8

Similar Publications

Hydroxylated-Benz[a]anthracenes Induce Two Apoptosis-Related Gene Expressions in the Liver of the Nibbler Fish .

Toxics

December 2024

Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan.

Polycyclic aromatic hydrocarbons (PAHs) are known to have toxic effects on fish. In this study, we examined the effects of benz[a]anthracene (BaA), a type of PAH, on fish liver metabolism. Nibbler fish () were intraperitoneally injected with BaA (10 ng/g body weight) four times over a 10-day period.

View Article and Find Full Text PDF

Anti-Inflammatory and Anticancer Effects of Kaurenoic Acid in Overcoming Radioresistance in Breast Cancer Radiotherapy.

Nutrients

December 2024

Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.

: Peroxisome proliferator-activated receptor γ (PPARγ) plays a key role in mediating anti-inflammatory and anticancer effects in the tumor microenvironment. Kaurenoic acid (KA), a diterpene compound isolated from (L.) Pruski, has been demonstrated to exert anti-inflammatory, anticancer, and antihuman immunodeficiency virus effects.

View Article and Find Full Text PDF

Calcium deposition in vascular smooth muscle cells (VSMCs), a form of ectopic ossification in blood vessels, can result in rigidity of the vasculature and an increase in cardiac events. Here, we report that CCAAT/enhancer-binding protein beta (C/EBPβ) potentiates calcium deposition in VSMCs and mouse aorta induced by inorganic phosphate (Pi) or vitamin D. Based on cDNA microarray and RNA sequencing data of Pi-treated rat VSMCs, C/EBPβ was found to be upregulated and thus selected for further evaluation.

View Article and Find Full Text PDF

Due to their inability to biodegrade, petroleum-based plastics pose significant environmental challenges by disrupting aquatic, marine, and terrestrial ecosystems. Additionally, the widespread presence of microplastics and nanoplastics induces serious health risks for humans and animals. These pressing issues create an urgent need for designing and developing eco-friendly, biodegradable, renewable, and non-toxic plastic alternatives.

View Article and Find Full Text PDF

Native ion channels play key roles in biological systems, and engineered versions are widely used as chemogenetic tools and in sensing devices . Protein design has been harnessed to generate pore-containing transmembrane proteins, but the capability to design ion selectivity based on the interactions between ions and selectivity filter residues, a crucial feature of native ion channels , has been constrained by the lack of methods to place the metal-coordinating residues with atomic-level precision. Here we describe a bottom-up RFdiffusion-based approach to construct Ca channels from defined selectivity filter residue geometries, and use this approach to design symmetric oligomeric channels with Ca selectivity filters having different coordination numbers and different geometries at the entrance of a wide pore buttressed by multiple transmembrane helices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!