Highland barley is a grain crop grown in Tibet, China. This study investigated the structure of highland barley starch using ultrasound (40 kHz, 40 min, 165.5 W) and germination treatments (30℃ with 80% relative humidity). The macroscopic morphology and the barley's fine and molecular structure were evaluated. After sequential ultrasound pretreatment and germination, a significant difference in moisture content and surface roughness was noted between highland barley and the other groups. All test groups showed an increased particle size distribution range with increasing germination time. FTIR results also indicated that after sequential ultrasound pretreatment and germination, the absorption intensity of the intramolecular hydroxyl (-OH) group of starch increased, and hydrogen bonding was stronger compared to the untreated germinated sample. In addition, XRD analysis revealed that starch crystallinity increased following sequential ultrasound treatment and germination, but a-type of crystallinity remained after sonication. Further, the Mw of sequential ultrasound pretreatment and germination at any time is higher than that of sequential germination and ultrasound. As a result of sequential ultrasound pretreatment and germination, changes in the content of chain length of barley starch were consistent with germination alone. At the same time, the average degree of polymerisation (DP) fluctuated slightly. Lastly, the starch was modified during the sonication process, either prior to or following sonication. Pretreatment with ultrasound illustrated a more profound effect on barley starch than sequential germination and ultrasound treatment. In conclusion, these results indicate that sequential ultrasound pretreatment and germination improve the fine structure of highland barley starch.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122010 | PMC |
http://dx.doi.org/10.1016/j.ultsonch.2023.106394 | DOI Listing |
Sci Rep
December 2024
Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
Ossification of the ligamentum flavum (OLF) is the main causative factor of spinal stenosis, but how to accurately and efficiently identify the ossification region is a clinical pain point and an urgent problem to be solved. Currently, we can only rely on the doctor's subjective experience for identification, with low efficiency and large error. In this study, a deep learning method is introduced for the first time into the diagnosis of ligamentum flavum ossificans, we proposed a lightweight, automatic and efficient method for identifying ossified regions, called CDUNeXt.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electronics Engineering, Vellore Institute of Technology, Vellore, 632014, Tamilnadu, India.
A new era for diagnosing and treating Deep Vein Thrombosis (DVT) relies on precise segmentation from medical images. Our research introduces a novel algorithm, the Modified-Net architecture, which integrates a broad spectrum of architectural components tailored to detect the intricate patterns and variances in DVT imaging data. Our work integrates advanced components such as dilated convolutions for larger receptive fields, spatial pyramid pooling for context, residual and inception blocks for multiscale feature extraction, and attention mechanisms for highlighting key features.
View Article and Find Full Text PDFJ Ultrasound Med
December 2024
Department of Computer Science and Engineering, SRM Institute of Science and Technology, Vadapalani Campus, Chennai, India.
Objectives: Birthweight prediction in fetal development presents a challenge in direct measurement and often depends on empirical formulas based on the clinician's experience. Existing methods suffer from low accuracy and high execution times, limiting their clinical effectiveness. This study aims to introduce a novel approach integrating feature-wise linear modulation (FiLM), gated recurrent unit (GRU), and Attention network to improve birthweight prediction using ultrasound data.
View Article and Find Full Text PDFBMC Med Educ
December 2024
Department of Ultrasound, First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Shushan Hefei, Anhui, 230022, China.
Objective: This study aimed to explore the effectiveness of combining fetal heart sequential cross-sectional scanning with drawing methods, mind mapping, and case-based learning (CBL) for training in fetal conotruncal anomalies (CA) screening.
Method: An experimental control method was employed. Doctors participating in continuing fetal ultrasound education were randomly divided into two groups.
Biosci Trends
December 2024
Faculty of Hepato-Pancreato-Biliary Surgery, the First Medical Center of the Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of the Chinese PLA, Beijing, China.
Up to half of hepatocellular carcinoma (HCC) cases are diagnosed at an advanced stage, for which effective treatment options are lacking, resulting in a poor prognosis. Over the past few years, the combination of immune checkpoint inhibitors and anti-angiogenic targeted therapy has proven highly efficacious in treating advanced HCC, significantly extending patients' survival and providing a potential for sequential curative surgery. After sequential curative hepatectomy or liver transplantation following conversion therapy, patients can receive long-term survival benefits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!