AI Article Synopsis

  • Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic disorder that causes accelerated aging and typically results in a life expectancy of around 14 years.
  • The condition is primarily caused by a mutation in the LMNA gene, which leads to the production of a harmful protein called progerin, affecting DNA repair processes.
  • Research indicates that progerin expression increases the occurrence of imprecise DNA end-joining during repair, moving away from the more accurate homologous recombination method, potentially contributing to the symptoms of accelerated aging in HGPS patients.

Article Abstract

Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by features of accelerated aging and a life expectancy of about 14 years. HGPS is commonly caused by a point mutation in the LMNA gene which codes for lamin A, an essential component of the nuclear lamina. The HGPS mutation alters splicing of the LMNA transcript, leading to a truncated, farnesylated form of lamin A termed "progerin." Progerin is also produced in small amounts in healthy individuals by alternative splicing of RNA and has been implicated in normal aging. HGPS is associated with an accumulation of genomic DNA double-strand breaks (DSBs), suggesting alteration of DNA repair. DSB repair normally occurs by either homologous recombination (HR), an accurate, templated form of repair, or by nonhomologous end-joining (NHEJ), a non-templated rejoining of DNA ends that can be error-prone; however a good portion of NHEJ events occurs precisely with no alteration to joined sequences. Previously, we reported that over-expression of progerin correlated with increased NHEJ relative to HR. We now report on progerin's impact on the nature of DNA end-joining. We used a model system involving a DNA end-joining reporter substrate integrated into the genome of cultured thymidine kinase-deficient mouse fibroblasts. Some cells were engineered to express progerin. Two closely spaced DSBs were induced in the integrated substrate through expression of endonuclease I-SceI, and DSB repair events were recovered through selection for thymidine kinase function. DNA sequencing revealed that progerin expression correlated with a significant shift away from precise end-joining between the two I-SceI sites and toward imprecise end-joining. Additional experiments revealed that progerin did not reduce HR fidelity. Our work suggests that progerin suppresses interactions between complementary sequences at DNA termini, thereby shifting DSB repair toward low-fidelity DNA end-joining and perhaps contributing to accelerated and normal aging through compromised genome stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133198PMC
http://dx.doi.org/10.1016/j.dnarep.2023.103491DOI Listing

Publication Analysis

Top Keywords

dna end-joining
16
dsb repair
12
progerin expression
8
normal aging
8
dna
8
revealed progerin
8
end-joining
7
progerin
7
repair
5
corruption dna
4

Similar Publications

Molecular genetic tools such as CRISPR-Cas gene editing systems are invaluable for understanding gene and protein function and revealing the details of a pathogen's life and disease cycles. Here we present protocols for genome editing in Phytophthora infestans, an oomycete with global importance as a pathogen of potato and tomato. Using a vector system that expresses variants of Cas12a from Lachnospiraceae bacterium and its guide RNA from a unified transcript, we first present a method for editing genes through the non-homologous end-joining (NHEJ) pathway.

View Article and Find Full Text PDF

Pyrrolizidine alkaloids (PAs) are common phytotoxins that are found worldwide. Upon hepatic metabolic activation, the reactive PA metabolites covalently bind to DNAs and form DNA adducts, causing mutagenicity and tumorigenicity in the liver. However, the molecular basis of the formation and removal of PA-derived DNA adducts remains largely unexplored.

View Article and Find Full Text PDF

It is thought that cells surviving ionizing radiation exposure repair DNA double-strand breaks (DSBs) and restore their genomes. However, the recent biochemical and genetic characterization of DSB repair pathways reveals that only homologous recombination (HR) can function in an error-free manner and that the non-homologous end joining (NHEJ) pathways canonical NHEJ (c-NHEJ), alternative end joining (alt-EJ), and single-strand annealing (SSA) are error-prone, and potentially leave behind genomic scars and altered genomes. The strong cell cycle restriction of HR to S/G2 phases and the unparalleled efficiency of c-NHEJ throughout the cell cycle, raise the intriguing question as to how far a surviving cell "reaches" after repairing the genome back to its pre-irradiation state.

View Article and Find Full Text PDF

Regulation of pathway choice in DNA repair after double-strand breaks.

Curr Opin Pharmacol

December 2024

Biotechnology Research and Innovation Council - National Institute of Immunology (BRIC-NII), Aruna Asaf Ali Marg, New Delhi 110067, India; Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani 741251, India. Electronic address:

DNA damage signaling is a highly coordinated cellular process which is required for the removal of DNA lesions. Amongst the different types of DNA damage, double-strand breaks (DSBs) are the most harmful type of lesion that attenuates cellular proliferation. DSBs are repaired by two major pathways-homologous recombination (HR), and non-homologous end-joining (NHEJ) and in some cases by microhomology-mediated end-joining (MMEJ).

View Article and Find Full Text PDF

Background And Purpose: Radiotherapy induces tumor cell killing by generating DNA double strand breaks (DSBs). The effectiveness of radiotherapy is significantly influenced by the repair of DSBs, which counteracts this lethal effect. Current investigations are focused on determining whether non-homologous end joining (NHEJ) or homologous recombination is the predominant repair pathway following proton and photon radiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!