Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Superpixel is the over-segmentation region of an image, whose basic units "pixels" have similar properties. Although many popular seeds-based algorithms have been proposed to improve the segmentation quality of superpixels, they still suffer from the seeds initialization problem and the pixel assignment problem. In this paper, we propose Vine Spread for Superpixel Segmentation (VSSS) to form superpixel with high quality. First, we extract image color and gradient features to define the soil model that establishes a "soil" environment for vine, and then we define the vine state model by simulating the vine "physiological" state. Thereafter, to catch more image details and twigs of the object, we propose a new seeds initialization strategy that perceives image gradients at the pixel-level and without randomness. Next, to balance the boundary adherence and the regularity of the superpixel, we define a three-stage "parallel spreading" vine spread process as a novel pixel assignment scheme, in which the proposed nonlinear velocity for vines helps to form the superpixel with regular shape and homogeneity, the crazy spreading mode for vines and the soil averaging strategy help to enhance the boundary adherence of superpixel. Finally, a series of experimental results demonstrate that our VSSS offers competitive performance in the seed-based methods, especially in catching object details and twigs, balancing boundary adherence and obtaining regular shape superpixels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2023.3234700 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!