Unconstrained handwritten text recognition is a challenging computer vision task. It is traditionally handled by a two-step approach, combining line segmentation followed by text line recognition. For the first time, we propose an end-to-end segmentation-free architecture for the task of handwritten document recognition: the Document Attention Network. In addition to text recognition, the model is trained to label text parts using begin and end tags in an XML-like fashion. This model is made up of an FCN encoder for feature extraction and a stack of transformer decoder layers for a recurrent token-by-token prediction process. It takes whole text documents as input and sequentially outputs characters, as well as logical layout tokens. Contrary to the existing segmentation-based approaches, the model is trained without using any segmentation label. We achieve competitive results on the READ 2016 dataset at page level, as well as double-page level with a CER of 3.43% and 3.70%, respectively. We also provide results for the RIMES 2009 dataset at page level, reaching 4.54% of CER. We provide all source code and pre-trained model weights at https://github.com/FactoDeepLearning/DAN.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2023.3235826DOI Listing

Publication Analysis

Top Keywords

text recognition
12
document attention
8
attention network
8
handwritten document
8
document recognition
8
model trained
8
dataset level
8
recognition
5
text
5
dan segmentation-free
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!