Semantic segmentation models gain robustness against adverse illumination conditions by taking advantage of complementary information from visible and thermal infrared (RGB-T) images. Despite its importance, most existing RGB-T semantic segmentation models directly adopt primitive fusion strategies, such as elementwise summation, to integrate multimodal features. Such strategies, unfortunately, overlook the modality discrepancies caused by inconsistent unimodal features obtained by two independent feature extractors, thus hindering the exploitation of cross-modal complementary information within the multimodal data. For that, we propose a novel network for RGB-T semantic segmentation, i.e. MDRNet+, which is an improved version of our previous work ABMDRNet. The core of MDRNet+ is a brand new idea, termed the strategy of bridging-then-fusing, which mitigates modality discrepancies before cross-modal feature fusion. Concretely, an improved Modality Discrepancy Reduction (MDR+) subnetwork is designed, which first extracts unimodal features and reduces their modality discrepancies. Afterward, discriminative multimodal features for RGB-T semantic segmentation are adaptively selected and integrated via several channel-weighted fusion (CWF) modules. Furthermore, a multiscale spatial context (MSC) module and a multiscale channel context (MCC) module are presented to effectively capture the contextual information. Finally, we elaborately assemble a challenging RGB-T semantic segmentation dataset, i.e., RTSS, for urban scene understanding to mitigate the lack of well-annotated training data. Comprehensive experiments demonstrate that our proposed model surpasses other state-of-the-art models on the MFNet, PST900, and RTSS datasets remarkably.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2022.3233089 | DOI Listing |
J Dent Sci
January 2025
Department of Dentistry, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
Front Plant Sci
January 2025
College of Big Data, Yunnan Agricultural University, Kunming, China.
Introduction: Weeds are a major factor affecting crop yield and quality. Accurate identification and localization of crops and weeds are essential for achieving automated weed management in precision agriculture, especially given the challenges in recognition accuracy and real-time processing in complex field environments. To address this issue, this paper proposes an efficient crop-weed segmentation model based on an improved UNet architecture and attention mechanisms to enhance both recognition accuracy and processing speed.
View Article and Find Full Text PDFIEEE Trans Instrum Meas
May 2024
School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China.
Automatic retinal layer segmentation with medical images, such as optical coherence tomography (OCT) images, serves as an important tool for diagnosing ophthalmic diseases. However, it is challenging to achieve accurate segmentation due to low contrast and blood flow noises presented in the images. In addition, the algorithm should be light-weight to be deployed for practical clinical applications.
View Article and Find Full Text PDFJ Cardiovasc Magn Reson
January 2025
Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.
Purpose: To investigate image quality and agreement of derived cardiac function parameters in a novel joint image reconstruction and segmentation approach based on disentangled representation learning, enabling real-time cardiac cine imaging during free-breathing.
Methods: A multi-tasking neural network architecture, incorporating disentangled representation learning, was trained using simulated examinations based on data from a public repository along with MR scans specifically acquired for model development. An exploratory feasibility study evaluated the method on undersampled real-time acquisitions using an in-house developed spiral bSSFP pulse sequence in eight healthy participants and five patients with intermittent atrial fibrillation.
Sensors (Basel)
January 2025
Mechnical and Vehicle Engineering, Hunan University, Changsha 411082, China.
Chip defect detection is a crucial aspect of the semiconductor production industry, given its significant impact on chip performance. This paper proposes a lightweight neural network with dual decoding paths for LED chip segmentation, named LDDP-Net. Within the LDDP-Net framework, the receptive field of the MobileNetv3 backbone is modified to mitigate information loss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!