Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Real-time chemical and biological sensing in vitro is important for application in health and environmental monitoring. Thus, a more rapid and stable detection method is urgently needed. Herein, an immediate-stable real-time fluorescent immunosensor with a high response speed (∼100%, <1 s) and approximately zero steady-state error is constructed. The developed sensor is based on the MnO-triggered immediate-stable fluorogenic reaction between dopamine and orcinol monohydrate to produce azamonardine (DMTM). The obtained DMTM is identified and characterized by high-resolution mass spectrometry, H NMR spectroscopy, C NMR spectroscopy, and theoretical calculations. The present sensor achieves a highly sensitive detection of dopamine (DA) with a limit of detection (LOD) of 10 nM as well as alkaline phosphates (ALP) with an LOD of 0.1 mU/mL by using orcinol monohydrate phosphate sodium salt as a substrate. As a proof of concept, ALP-triggered fluorescence ELISA using cardiac troponin I (cTnI) as a model antigen target is further constructed. The developed real-time sensor achieves the detection of cTnI with an LOD of 0.05 ng/mL. Moreover, the sensor proposed by us is successfully applied to assess the cTnI level in clinical serum specimens and yields results consistent with those obtained by the commercial ELISA method. The immediate-stable real-time fluorescence immunosensor provides a promising and powerful platform for the trace detection of biomolecules in clinical diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.2c05149 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!