Crops genetically engineered to produce insect-killing proteins from Bacillus thuringiensis (Bt) have revolutionized management of some major pests, but their efficacy is reduced when pests evolve resistance. Practical resistance, which is field-evolved resistance that reduces the efficacy of Bt crops and has practical implications for pest management, has been reported in 26 cases in seven countries involving 11 pest species. This special collection includes six original papers that present a global perspective on field-evolved resistance to Bt crops. One is a synthetic review providing a comprehensive global summary of the status of the resistance or susceptibility to Bt crops of 24 pest species in 12 countries. Another evaluates the inheritance and fitness costs of resistance of Diabrotica virgifera virgifera to Gpp34/Tpp35Ab (formerly called Cry34/35Ab). Two papers describe and demonstrate advances in techniques for monitoring field-evolved resistance. One uses a modified F2 screen for resistance to Cry1Ac and Cry2Ab in Helicoverpa zea in the United States. The other uses genomics to analyze nonrecessive resistance to Cry1Ac in Helicoverpa armigera in China. Two papers provide multi-year monitoring data for resistance to Bt corn in Spain and Canada, respectively. The monitoring data from Spain evaluate responses to Cry1Ab of the corn borers Sesamia nonagrioides and Ostrinia nubilalis, whereas the data from Canada track responses of O. nubilalis to Cry1Ab, Cry1Fa, Cry1A.105, and Cry2Ab. We hope the new methods, results, and conclusions reported here will spur additional research and help to enhance the sustainability of current and future transgenic insecticidal crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jee/toad054 | DOI Listing |
J Econ Entomol
January 2025
Department of Entomology and Plant Pathology and the North Carolina Plant Sciences Institute, NC State University, Raleigh, NC, USA.
Debate over resistance management tactics for genetically engineered (GE) crops expressing insecticidal toxins is not new. For several decades, researchers, regulators, and agricultural industry scientists have developed strategies to limit the evolution of resistance in populations of lepidopteran and coleopteran pests. A key attribute of many of these events was insecticide resistance management (IRM) strategies designed around a presumed high-dose expression sufficient to kill 99.
View Article and Find Full Text PDFInsects
November 2024
Department of Entomology, Michigan State University, East Lansing, MI 48824, USA.
This study examines resistance inheritance to the pyrethroid insecticides esfenvalerate and deltamethrin in a Puerto Rican strain of fall armyworm (FAW), , a major global pest of corn. The resistant strain (PPR) showed significantly higher resistance compared to a susceptible strain (SUS), with a 62-fold X-linked and 15-fold autosomal-linked resistance ratio (RR) for esfenvalerate and deltamethrin, respectively. Resistance was incompletely dominant for both insecticides.
View Article and Find Full Text PDFBMC Genomics
December 2024
Department of Entomology, University of Maryland, College Park, MD, 20742, USA.
Strong and shifting selective pressures of the Anthropocene are rapidly shaping phenomes and genomes of organisms worldwide. Crops expressing pesticidal proteins from Bacillus thuringiensis (Bt) represent one major selective force on insect genomes. Here we characterize a rapid response to selection by Bt crops in a major crop pest, Helicoverpa zea.
View Article and Find Full Text PDFPestic Biochem Physiol
December 2024
Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX, USA. Electronic address:
New insecticides prequalified for malaria control interventions include modulators of nicotinic acetylcholine receptors that act selectively on different subunits leading to variable sensitivity among arthropods. This study aimed to investigate the molecular mechanisms underlying contrasting susceptibility to neonicotinoids observed in wild populations of two mosquito sibling species. Bioassays and a synergist test with piperonyl butoxide revealed that the sister taxa, Anopheles gambiae and An.
View Article and Find Full Text PDFEcotoxicology
December 2024
Institute of Plant Protection, MNS-University of Agriculture Multan, Multan, Pakistan.
The yellow fever mosquito, Aedes aegypti L., known for transmitting viruses causing yellow fever, dengue, chikungunya, and Zika fever, presents a substantial risk to global human health. The development of insecticide resistance in disease vectors has become a significant problem in Ae.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!