Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this article, we investigate the role of gender in collaboration patterns by analyzing gender-based homophily-the tendency for researchers to co-author with individuals of the same gender. We develop and apply novel methodology to the corpus of JSTOR articles, a broad scholarly landscape, which we analyze at various levels of granularity. Most notably, for a precise analysis of gender homophily, we develop methodology which explicitly accounts for the fact that the data comprises heterogeneous intellectual communities and that not all authorships are exchangeable. In particular, we distinguish three phenomena which may affect the distribution of observed gender homophily in collaborations: a structural component that is due to demographics and non-gendered authorship norms of a scholarly community, a compositional component which is driven by varying gender representation across sub-disciplines and time, and a behavioral component which we define as the remainder of observed gender homophily after its structural and compositional components have been taken into account. Using minimal modeling assumptions, the methodology we develop allows us to test for behavioral homophily. We find that statistically significant behavioral homophily can be detected across the JSTOR corpus and show that this finding is robust to missing gender indicators in our data. In a secondary analysis, we show that the proportion of women representation in a field is positively associated with the probability of finding statistically significant behavioral homophily.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10075399 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0283106 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!