To understand the crystallization mechanism of zeolites, it is important to clarify the detailed role of the structure-directing agent, which is essential for the crystallization of zeolite, interacting with an amorphous aluminosilicate matrix. In this study, to reveal the structure-directing effect, the evolution of the aluminosilicate precursor which causes the nucleation of zeolite is analyzed by the comprehensive approach including atom-selective methods. The results of total and atom-selective pair distribution function analyses and X-ray absorption spectroscopy indicate that a crystalline-like coordination environment gradually forms around Cs cations. This corresponds to the fact that Cs is located at the center of the units in the RHO structure whose unit is unique in this zeolite, and a similar tendency is also confirmed in the ANA system. The results collectively support the conventional hypothesis that the formation of the crystalline-like structure before the apparent nucleation of the zeolite.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.3c00432DOI Listing

Publication Analysis

Top Keywords

reveal structure-directing
8
nucleation zeolite
8
atom-selective analyses
4
analyses reveal
4
structure-directing cation
4
cation synthesis
4
synthesis zeolites
4
zeolites understand
4
understand crystallization
4
crystallization mechanism
4

Similar Publications

A key issue in photoelectrochemical applications is the modification of the behavior of photogenerated charge barriers. An effective strategy to improve the photoelectrochemical performance of semiconductor materials is to use the facet effect to promote spatial charge separation. In this work, three different morphologies of lead chromate (PbCrO) crystals are prepared by a simple hydrothermal method that used ammonium fluoride as the structure-directing agents.

View Article and Find Full Text PDF

Herein, porous SnO microspheres in a three-dimensional (3D) hierarchical architecture were successfully synthesized via a facile hydrothermal route utilizing d-(+)-glucose and cetyltrimethylammonium bromide (CTAB), which act as reducing and structure-directing agents, respectively. Controlled adjustment of the CTAB to glucose mole ratio, reaction temperature, reaction time, and the calcination parameters all provided important clues toward optimizing the final morphologies of SnO with exceptional structural stability and reasonable monodispersity. Electron microscopy analysis revealed that microspheres formed were hierarchical self-assemblies of numerous primary SnO nanoparticles of ∼3-8 nm that coalesce together to form nearly monodispersed and ordered spherical structures of sizes in the range of 230-250 nm and are appreciably porous.

View Article and Find Full Text PDF

We have performed a data science study of Monte Carlo (MC) simulation trajectories to understand factors that can accelerate the formation of zeolite nanoporous crystals, a process that can take days or even weeks. In previous work, MC simulations predicted and experiments confirmed that using a secondary organic structure-directing agent (OSDA) accelerates the crystallization of all-silica LTA zeolite, with experiments finding a three-fold speedup [Bores et al., Phys.

View Article and Find Full Text PDF

Localized Boron Sites in Large Pore Borosilicate Zeolite EMM-59 Determined by Electron Crystallography.

J Am Chem Soc

December 2024

Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden.

The structure of novel large pore borosilicate zeolite EMM-59 (|CHN|[BSiO]) with localized framework boron sites was determined by using three-dimensional electron diffraction (3D ED) and scanning transmission electron microscopy (STEM) imaging. EMM-59 was synthesized using 2,2-(cyclopentane-1,1-diyl)bis(,-diethyl--methylethan-1-aminium) as an organic structure-directing agent (OSDA). The framework has a three-dimensional intersecting channel system delimited by 12 × 10 × 10-ring openings and contains 28 T and 60 oxygen atoms in the asymmetric unit, making it the most complex monoclinic zeolite.

View Article and Find Full Text PDF

Atomically thin 2D materials for solution-processable emerging photovoltaics.

Chem Commun (Camb)

January 2025

Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), 91058 Erlangen, Germany.

Article Synopsis
  • Atomically thin 2D materials like graphene and metal dichalcogenides offer unique electronic and chemical properties, making them promising candidates for various energy applications, especially in emerging photovoltaic devices.
  • These materials have a high surface area and can be chemically modified to adjust their properties such as bandgap and conductivity, enhancing their performance in solar cells.
  • The review emphasizes the potential of using van-der-Waals stacking of these materials for new ePV functionalities and highlights the role of machine learning in accelerating the discovery of innovative materials.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!