Carbon quantum dots (CQD) have drawn great interest worldwide for their extensive application as sensors due to their extraordinary physical and chemical characteristics, good biocompatibility, and high fluorescence in nature. Here, we demonstrate a technique for detecting mercury (Hg) ion using a fluorescent CQD probe. Ecology is concerned about the accumulation of heavy metal ions in water samples due to their harmful effects on human health. Sensitive identification and removal of metal ions from water samples are required to reduce heavy metals' risk. To find out Mercury in the water sample, carbon quantum dots were used and synthesized by 5-dimethyl amino methyl furfuryl alcohol and o-phenylene diamine through the hydrothermal technique. The synthesized CQD shows yellow emission when exposed to UV irradiation. Mercury ion was used to quench carbon quantum dots, and it was found that the detection limit was 5.2 nM with a linear range of 15-100 µM. The synthesized carbon quantum dots were demonstrated to efficiently detect Mercury ions in real water samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10895-023-03233-z | DOI Listing |
J Food Sci
January 2025
Nutrition Research Center, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
Alternatives to nonbiodegradable synthetic plastics for food packaging include films made from biopolymers that are nontoxic and environment-friendly. In this study, carnauba wax (CW) and nitrogen-doped graphene quantum dots (NG) as functional additives were utilized in the production of pectin/gelatin (PG) film. NG was synthesized through the microwave method, using acetic acid as the carbon source, giving size, and zeta potential of 1.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Hebei Lansheng Bio-Tech Co, Ltd, Shijiazhuang, 052263, P. R. China.
A novel fluorescence sensing nanoplatform (CDs/AuNCs@ZIF-8) encapsulating carbon dots (CDs) and gold nanoclusters (AuNCs) within a zeolitic imidazolate framework-8 (ZIF-8) was developed for ratiometric detection of formaldehyde (FA) in the medium of hydroxylamine hydrochloride (NHOH·HCl). The nanoplatform exhibited pink fluorescence due to the aggregation-induced emission (AIE) effect of AuNCs and the internal filtration effect (IFE) between AuNCs and CDs. Upon reaction between NHOH·HCl and FA, a Schiff base formed via aldehyde-diamine condensation, releasing hydrochloric acid.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, PR China.
Based on the enhanced peroxidase-like activity of carbon dots nanozymes (CDszymes), with a specific oxidation reaction of D-amino acid oxidase catalysing the formation of HO from D-amino acid, an ultrasensitive sensing platform, was constructed for the quantitative detection of D-amino acids in saliva. With the increase of D-amino acids concentration, the blue color of catalytic product gradually deepend, the fluorescence CDszymes gradually quenched, and the temperature gradually increased. Using D-alanine as D-amino acid models, the detection limits of D-alanine in colorimetric/photothermal/fluorescent mode were 0.
View Article and Find Full Text PDFFood Chem X
January 2025
Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, India.
The study focused on converting tea bag waste into strong fluorescence carbon quantum dots (TBW-CQDs) for the detection of acrylamide in drinking water, antimicrobial activity, and photocatalytic degradation. The TBW-CQDs exhibited blue luminescence and maximum absorbance at 287 nm under UV light and distinctive fluorescence emission and excitation wavelengths at 425 nm and 287 nm, respectively. TBW-CQDs revealed a particle size of 8.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, Middle East Technical University, 06800 Ankara, Türkiye.
This work describes the development of the first enantioselective addition reaction between 1,3,5,7-tetramethyl-BODIPYs and isatin derivatives. The reaction utilizes bifunctional quinine/squaramide organocatalysts and affords nine novel chiral BODIPY dyes under mild conditions, with enantioselectivities reaching up to 60%. The synthesized BODIPY-oxindoles exhibit high fluorescence emissions, consistent with their parent BODIPYs, and display tunable colors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!