Combined therapeutic effect of YHO-1701 with PD-1 blockade is dependent on natural killer cell activity in syngeneic mouse models.

Cancer Immunol Immunother

Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka-Shi, Shizuoka, 422-8526, Japan.

Published: July 2023

The signal transducer and activator of transcription 3 (STAT3) signaling pathway is a key mediator of cancer cell proliferation, survival, and invasion. We discovered YHO-1701 as a small molecule inhibitor of STAT3 dimerization and demonstrated its potent anti-tumor activity using xenograft mouse models as monotherapy and combination therapy with molecular targeted drugs. STAT3 is also associated with cancer immune tolerance; therefore, we used the female CT26 syngeneic mouse model to examine the effect of combining YHO-1701 administration with PD-1/PD-L1 blockade. Pretreatment of the mice with YHO-1701 before starting anti-PD-1 antibody administration resulted in a significant therapeutic effect. In addition, the effect of monotherapy and combination treatment with YHO-1701 was significantly abolished by depleting natural killer (NK) cell activity. YHO-1701 was also found to restore the activity of mouse NK cells under inhibitory conditions in vitro. Furthermore, this combination therapy significantly inhibited tumor growth in an immunotherapy-resistant model of murine CMS5a fibrosarcoma. These results suggest that the combination of YHO-1701 with PD-1/PD-L1 blockade might be a new candidate for cancer immunotherapy involving the enhancement of NK cell activity in the tumor microenvironment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10992562PMC
http://dx.doi.org/10.1007/s00262-023-03440-4DOI Listing

Publication Analysis

Top Keywords

cell activity
12
natural killer
8
killer cell
8
syngeneic mouse
8
mouse models
8
monotherapy combination
8
combination therapy
8
pd-1/pd-l1 blockade
8
yho-1701
7
activity
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!