Copper (Cu) was recently demonstrated to play a critical role in cellular physiological and biochemical processes, including energy production and maintenance, antioxidation and enzymatic activity, and signal transduction. Antioxidant 1 (ATOX1), a chaperone of Cu previously named human ATX1 homologue (HAH1), has been found to play an indispensable role in maintaining cellular Cu homeostasis, antioxidative stress, and transcriptional regulation. In the past decade, it has also been found to be involved in a variety of diseases, including numerous neurodegenerative diseases, cancers, and metabolic diseases. Recently, increasing evidence has revealed that ATOX1 is involved in the regulation of cell migration, proliferation, autophagy, DNA damage repair (DDR), and death, as well as in organism development and reproduction. This review summarizes recent advances in the research on the diverse physiological and cytological functions of ATOX1 and the underlying mechanisms of its action in human health and diseases. The potential of ATOX1 as a therapeutic target is also discussed. This review aims to pose unanswered questions related to ATOX1 biology and explore the potential use of ATOX1 as a therapeutic target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00109-023-02311-w | DOI Listing |
Sci Rep
December 2024
School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
Cuproptosis, a newly identified form of cell death, has drawn increasing attention for its association with various cancers, though its specific role in colorectal cancer (CRC) remains unclear. In this study, transcriptomic and clinical data from CRC patients available in the TCGA database were analyzed to investigate the impact of cuproptosis. Differentially expressed genes linked to cuproptosis were identified using Weighted Gene Co-Expression Network Analysis (WGCNA).
View Article and Find Full Text PDFSci Rep
December 2024
Department of Clinical Pharmacy, Baoshan Hospital Affiliated to, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.
View Article and Find Full Text PDFTheranostic drugs represent an emerging path to deliver on the promise of precision medicine. However, bottlenecks remain in characterizing theranostic targets, identifying theranostic lead compounds, and tailoring theranostic drugs. To overcome these bottlenecks, we present the Theranostic Genome, the part of the human genome whose expression can be utilized to combine therapeutic and diagnostic applications.
View Article and Find Full Text PDFBAY 2413555 is a novel selective and reversible positive allosteric modulator of the type 2 muscarinic acetylcholine (M2) receptor, aimed at enhancing parasympathetic signaling and restoring cardiac autonomic balance for the treatment of heart failure (HF). This study tested the safety, tolerability and pharmacokinetics of this novel therapeutic option. REMOTE-HF was a multicenter, double-blind, randomized, placebo-controlled, phase Ib dose-titration study with two active arms.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
Accumulating evidence indicates that cellular senescence is closely associated with osteoarthritis. However, there is limited research on the mechanisms underlying fibroblast-like synoviocyte senescence and its impact on osteoarthritis progression. Here, we elucidate a positive correlation between fibroblast-like synoviocyte senescence and osteoarthritis progression and reveal that GATD3A deficiency induces fibroblast-like synoviocyte senescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!