Cationic tuning for lanthanide (Ce/Pr)-activated inorganic phosphors with stable, efficient, and fast-decay 5d-4f emissions has emerged as an important strategy toward the continuing pursuit of superior scintillators. The in-depth understanding of the cationic effects on photo- and radioluminescence of lanthanides Ce and Pr centers is requisite for the rational cationic tuning. Here, we perform a systematic study on the structure and photo- and X-ray radioluminescence properties of KRE(PO):Ce/Pr (RE = La, Gd, and Y) phosphors to elucidate the underlying cationic effects on their 4f-5d luminescence. By using the Rietveld refinements, low-temperature synchrotron-radiation vacuum ultraviolet-ultraviolet spectra, vibronic coupling analyses, and vacuum-referred binding energy schemes, the origins of lattice parameter evolutions, 5d excitation energies, 5d emission energies, and Stokes shifts as well as good emission thermal stabilities of KRE(PO):Ce systems are revealed. In addition, the correlations of Pr luminescence to Ce in the same sites are also discussed. Finally, the X-ray excited luminescence manifests that the KGd(PO):1%Ce sample possesses a light yield of ∼10,217 photons/MeV, indicating its potentiality toward X-ray detection application. These results deepen the understanding of cationic effects on Ce and Pr 4f-5d luminescence and inspire the inorganic scintillator development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.3c00566 | DOI Listing |
Org Biomol Chem
January 2025
State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.
The cycloaddition of CO to epoxide (CCE) reactions produce valuable cyclic carbonates useful in the electrolytes of lithium-ion batteries, as organic solvents, and in polymeric materials. However, halide-containing catalysts are predominantly used in these reactions, despite halides being notoriously corrosive to steel processing equipment and residual halides also having harmful effects. To eliminate the reliance on halides as cocatalyst in most CCE reactions, halide-free catalysts are highly desirable.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Green Pesticide (CCNU), College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
The research of chiral separation technology is of great significance for understanding the origin of life and promoting the application of chiral molecules. Herein, anionic chiral pillar[6]arene and cationic pillar[6]arene were designed and synthesized, and a chiral pillar[6]arene membrane was constructed by layer-by-layer assembly through electrostatic interactions. The transport rates of l and d in this channel were 14.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Materials Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
The liquid/liquid interfaces of room-temperature ionic liquids (RTILs) play a pivotal role in chemical reactions owing to their characteristic microscopic structure, yet the structure of hydrophobic liquid/RTIL interfaces remains unclear. We studied the structure at the liquid/liquid interfaces of carbon tetrachloride (CCl4) and 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Cnmim][TFSA]; n = 4 and 8) RTILs using infrared-visible sum frequency generation (SFG) vibrational spectroscopy. A comparison of the SFG spectra of the CCl4/RTIL and air/RTIL interfaces revealed that the solvation of the alkyl chains of the [Cnmim]+ cations by CCl4 reduces the number of gauche defects in the alkyl chain and the interface number density of the cation at the CCl4 interface.
View Article and Find Full Text PDFSmall
January 2025
School of Physics, East China University of Science and Technology, Shanghai, 200237, China.
Water and ion transport in nanochannels is crucial for membrane-based technology in biological systems. 2D materials, especially graphene oxide (GO), the most frequently used as the starting material, are ideal building blocks for developing synthetic membranes. However, the selective exclusion of small ions while maintaining in a pressured filtration process remains a challenge for GO membranes.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
Local immunomodulation with nanoparticles (NPs) and focused ultrasound (FUS) is recognized for triggering anti-tumor immunity. However, the impact of these tumor immunomodulations on sex-specific microbiome diversity at distant sites and their correlation with therapeutic effectiveness remains unknown. Here, we conducted local intratumoral therapy using immunogenic cell death-enhancing Calreticulin-Nanoparticles (CRT-NPs) and FUS in male and female mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!