AI Article Synopsis

Article Abstract

The ability of spp. to nodulate and fix atmospheric nitrogen in soybean root nodules is critical to meeting humanity's nutritional needs. The intricacies of soybean bradyrhizobia-plant interactions have been studied extensively; however, bradyrhizobial ecology as influenced by phages has received somewhat less attention, even though these interactions may significantly impact soybean yield. In batch culture, four soybean bradyrhizobia strains, Bradyrhizobium japonicum S06B (S06B-Bj), B. japonicum S10J (S10J-Bj), Bradyrhizobium diazoefficiens USDA 122 (USDA 122-Bd), and Bradyrhizobium elkanii USDA 76 (USDA 76-Be), spontaneously (without apparent exogenous chemical or physical induction) produced tailed phages throughout the growth cycle; for three strains, phage concentrations exceeded cell numbers by ~3-fold after 48 h of incubation. Phage terminase large-subunit protein phylogeny revealed possible differences in phage packaging and replication mechanisms. Bioinformatic analyses predicted multiple prophage regions within each soybean bradyrhizobia genome, preventing accurate identification of spontaneously produced prophage (SPP) genomes. A DNA sequencing and mapping approach accurately delineated the boundaries of four SPP genomes within three of the soybean bradyrhizobia chromosomes and suggested that the SPPs were capable of transduction. In addition to the phages, S06B-Bj and USDA 76-Be contained three to four times more insertion sequences (IS) and large, conjugable, broad host range plasmids, both of which are known drivers of horizontal gene transfer (HGT) in soybean bradyrhizobia. These factors indicate that SPP along with IS and plasmids participate in HGT, drive bradyrhizobia evolution, and play an outsized role in bradyrhizobia ecology. Previous studies have shown that IS and plasmids mediate HGT of symbiotic nodulation () genes in soybean bradyrhizobia; however, these events require close cell-to-cell contact, which could be limited in soil environments. Bacteriophage-assisted gene transduction through spontaneously produced prophages provides a stable means of HGT not limited by the constraints of proximal cell-to-cell contact. These phage-mediated HGT events may shape soybean bradyrhizobia population ecology, with concomitant impacts on soybean agriculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127595PMC
http://dx.doi.org/10.1128/mbio.00295-23DOI Listing

Publication Analysis

Top Keywords

soybean bradyrhizobia
24
spontaneously produced
12
soybean
11
bradyrhizobia
8
usda 76-be
8
spp genomes
8
cell-to-cell contact
8
usda
5
hgt
5
spontaneously
4

Similar Publications

We herein investigated the effects of salt (NaCl) stress on soybean nodulation by rhizobial strains. We specifically exami-ned: (1) the effects of NaCl on nodule maturity and positioning by inoculating three rhizobial strains (Bradyrhizobium diazoefficiens USDA110, Bradyrhizobium elkanii USDA31, and Sinorhizobium fredii USDA191) onto soybean variety CNS, (2) the effects of the NaCl treatment on isoflavones (daidzein and genistein) secretion by CNS, (3) the effects of the NaCl treatment on gene expression induced by daidzein and genistein in rhizobia, and (4) the effects of the NaCl treatment on rhizobial growth. The results obtained were as follows: (1) the NaCl treatment delayed nodule development and reduced nodulation on the primary root following the USDA110 inoculation, minimal sensitivity regarding nodule formation in the USDA 31 inoculation, and significantly increased the mature nodule number and nodules on the primary root following the USDA 191 inoculation.

View Article and Find Full Text PDF

Soybean bradyrhizobia ( spp.) are symbiotic root-nodulating bacteria that fix atmospheric nitrogen for the host plant. The University of Delaware Culture Collection (UDBCC; 353 accessions) was created to study the diversity and ecology of soybean bradyrhizobia.

View Article and Find Full Text PDF

is known for fixing atmospheric nitrogen in symbiosis with agronomically important crops. This study focused on two groups of strains, each containing eight natural variants of the parental strains, SEMIA 586 (=CNPSo 17) or SEMIA 566 (=CNPSo 10). CNPSo 17 and CNPSo 10 were used as commercial inoculants for soybean crops in Brazil at the beginning of the crop expansion in the southern region in the 1960s-1970s.

View Article and Find Full Text PDF

Soybean (Glycine max (L.) Merr.), an important crop grown for its protein source for humans and livestock, is widely introduced in different parts of Ethiopia.

View Article and Find Full Text PDF

Crop rotation and inoculation increase soil bradyrhizobia population, soybean grain yields, and profitability.

Braz J Microbiol

December 2023

Instituto de Desenvolvimento Rural do Paraná-IAPAR-EMATER, Rodovia Celso Garcia Cid, Km 375, 86047-902, Londrina, Paraná, Brazil.

Crop rotation and rhizobial inoculation are strategies to increase yield by means of organic matter addition and modulation of microbial diversity. However, the extent to which these agricultural practices change soil Bradyrhizobium populations, soybean grain yield, and economic benefits to farmers is unclear. Thus, this study aimed to evaluate the interaction between crop rotation and inoculation of soybean (Glycine max) cultivated in two contrasting soils (clayey and sandy soil) on biological nitrogen fixation components, grain yields, and profits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!