The conserved ESX-1 type VII secretion system is a major virulence determinant of pathogenic mycobacteria, including Mycobacterium tuberculosis and Mycobacterium marinum. ESX-1 is known to interact with infected macrophages, but its potential roles in regulating other host cells and immunopathology have remained largely unexplored. Using a murine M. marinum infection model, we identify neutrophils and Ly6CMHCII monocytes as the main cellular reservoirs for the bacteria. We show that ESX-1 promotes intragranuloma accumulation of neutrophils and that neutrophils have a previously unrecognized required role in executing ESX-1-mediated pathology. To explore if ESX-1 also regulates the function of recruited neutrophils, we performed a single-cell RNA-sequencing analysis that indicated that ESX-1 drives newly recruited uninfected neutrophils into an inflammatory phenotype via an extrinsic mechanism. In contrast, monocytes restricted the accumulation of neutrophils and immunopathology, demonstrating a major host-protective function for monocytes specifically by suppressing ESX-1-dependent neutrophilic inflammation. Inducible nitric oxide synthase (iNOS) activity was required for the suppressive mechanism, and we identified Ly6CMHCII monocytes as the main iNOS-expressing cell type in the infected tissue. These results suggest that ESX-1 mediates immunopathology by promoting neutrophil accumulation and phenotypic differentiation in the infected tissue, and they demonstrate an antagonistic interplay between monocytes and neutrophils by which monocytes suppress host-detrimental neutrophilic inflammation. The ESX-1 type VII secretion system is required for virulence of pathogenic mycobacteria, including Mycobacterium tuberculosis. ESX-1 interacts with infected macrophages, but its potential roles in regulating other host cells and immunopathology have remained largely unexplored. We demonstrate that ESX-1 promotes immunopathology by driving intragranuloma accumulation of neutrophils, which upon arrival adopt an inflammatory phenotype in an ESX-1-dependent manner. In contrast, monocytes limited the accumulation of neutrophils and neutrophil-mediated pathology via an iNOS-dependent mechanism, suggesting a major host-protective function for monocytes specifically by restricting ESX-1-dependent neutrophilic inflammation. These findings provide insight into how ESX-1 promotes disease, and they reveal an antagonistic functional relationship between monocytes and neutrophils that might regulate immunopathology not only in mycobacterial infection but also in other infections as well as in inflammatory conditions and cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127687PMC
http://dx.doi.org/10.1128/mbio.02764-22DOI Listing

Publication Analysis

Top Keywords

accumulation neutrophils
16
intragranuloma accumulation
12
esx-1 promotes
12
neutrophilic inflammation
12
neutrophils
11
esx-1
10
monocytes
9
esx-1 type
8
type vii
8
vii secretion
8

Similar Publications

NET formation-mediated in situ protein delivery to the inflamed central nervous system.

Nat Commun

December 2024

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.

Delivering protein drugs to the central nervous system (CNS) is challenging due to the blood-brain and blood-spinal cord barrier. Here we show that neutrophils, which naturally migrate through these barriers to inflamed CNS sites and release neutrophil extracellular traps (NETs), can be leveraged for therapeutic delivery. Tannic acid nanoparticles tethered with anti-Ly6G antibody and interferon-β (aLy6G-IFNβ@TLP) are constructed for targeted neutrophil delivery.

View Article and Find Full Text PDF

Background: Thyroid-associated orbitopathy (TAO) is an autoimmune inflammatory disorder of the orbital adipose tissue, primarily causing oxidative stress injury and tissue remodeling in the orbital connective tissue. Ferroptosis is a form of programmed cell death driven by the accumulation of reactive oxygen species (ROS), iron metabolism disorder, and lipid peroxidation. This study aims to identify and validate the optimal feature genes (OFGs) of ferroptosis with diagnostic and therapeutic potential in TAO orbital adipose tissue through bioinformatics analysis and to assess their correlation with disease-related immune cell infiltration.

View Article and Find Full Text PDF

Neutrophil Extracellular Traps Induce Brain Edema Around Intracerebral Hematoma via ERK-Mediated Regulation of MMP9 and AQP4.

Transl Stroke Res

December 2024

Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Yuzhong, Chongqing, 400010, China.

Perihematomal edema (PHE) significantly aggravates secondary brain injury in patients with intracerebral hemorrhage (ICH), yet its detailed mechanisms remain elusive. Neutrophil extracellular traps (NETs) are known to exacerbate neurological deficits and worsen outcomes after stroke. This study explores the potential role of NETs in the pathogenesis of brain edema following ICH.

View Article and Find Full Text PDF

Safety assessment on CBD-rich hemp extract in sub-chronic cross-sex study with rats.

Toxicol Appl Pharmacol

December 2024

Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic. Electronic address:

Cannabidiol (CBD) is a phytocannabinoid from Cannabis sativa L., in which there is currently growing interest for medicinal use. Here, we focused on the safety and pharmacokinetics of a CBD-rich (77 %, w/w) full-spectrum hemp extract in male and female rats.

View Article and Find Full Text PDF

Tumor metastasis and recurrence: The role of perioperative NETosis.

Cancer Lett

December 2024

Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China. Electronic address:

Although surgical resection of tumor mass remains the mainstay of curative therapeutic management for solid tumors, accumulating studies suggest that these procedures promote tumor recurrence and metastasis. Regarded as the first immune cells to fight against infectious or inflammatory insults from surgery, neutrophils along with their ability of neutrophil extracellular traps (NETs) production has attracted much attention. A growing body of evidence suggests that NETs promote cancer metastasis by stimulating various stages, including local invasion, colonization, and growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!