The proper functioning of organelles depends on their intracellular localization, mediated by motor protein-dependent transport on cytoskeletal tracks. Rather than directly associating with a motor protein, peroxisomes move by hitchhiking on motile early endosomes in the filamentous fungus . However, the physiological role of peroxisome hitchhiking is unclear. Peroxisome hitchhiking requires the protein PxdA, which is conserved within the fungal subphylum Pezizomycotina but absent from other fungal clades. Woronin bodies are specialized peroxisomes that are also unique to the Pezizomycotina. In these fungi, multinucleate hyphal segments are separated by incomplete cell walls called septa that possess a central pore enabling cytoplasmic exchange. Upon damage to a hyphal segment, Woronin bodies plug septal pores to prevent widespread leakage. Here, we tested whether peroxisome hitchhiking is important for Woronin body motility, distribution, and function in . We show that Woronin body proteins are present within all motile peroxisomes and hitchhike on PxdA-labeled early endosomes during bidirectional, long-distance movements. Loss of peroxisome hitchhiking significantly affected Woronin body distribution and motility in the cytoplasm, but Woronin body hitchhiking is ultimately dispensable for septal localization and plugging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295486PMC
http://dx.doi.org/10.1091/mbc.E23-01-0025DOI Listing

Publication Analysis

Top Keywords

woronin body
20
peroxisome hitchhiking
16
early endosomes
12
body hitchhiking
8
dispensable septal
8
septal localization
8
woronin bodies
8
hitchhiking woronin
8
woronin
7
hitchhiking
7

Similar Publications

More than 10 million people suffer from lung diseases caused by the pathogenic fungus . The azole class of antifungals represent first line therapeutics for most of these infections however resistance is rising. Identification of novel antifungal targets that, when inhibited, synergise with the azoles will aid the development of agents that can improve therapeutic outcomes and supress the emergence of resistance.

View Article and Find Full Text PDF

The proper functioning of organelles depends on their intracellular localization, mediated by motor protein-dependent transport on cytoskeletal tracks. Rather than directly associating with a motor protein, peroxisomes move by hitchhiking on motile early endosomes in the filamentous fungus . However, the physiological role of peroxisome hitchhiking is unclear.

View Article and Find Full Text PDF

The proper functioning of organelles depends on their intracellular localization, mediated by motor protein-dependent transport on cytoskeletal tracks. Rather than directly associating with a motor protein, peroxisomes move by hitchhiking on motile early endosomes in the filamentous fungus . However, the cellular function of peroxisome hitchhiking is unclear.

View Article and Find Full Text PDF

Regulatory Mechanism of Trap Formation in the Nematode-Trapping Fungi.

J Fungi (Basel)

April 2022

State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China.

Nematode-trapping (NT) fungi play a significant role in the biological control of plant- parasitic nematodes. NT fungi, as a predator, can differentiate into specialized structures called "traps" to capture, kill, and consume nematodes at a nutrient-deprived condition. Therefore, trap formation is also an important indicator that NT fungi transition from a saprophytic to a predacious lifestyle.

View Article and Find Full Text PDF

F-actin dynamics following mechanical injury of Trichoderma atroviride and Neurospora crassa hyphae.

Fungal Genet Biol

April 2022

Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE). Ensenada, BC, México. Electronic address:

We investigated hyphae regeneration in Trichoderma atroviride and Neurospora crassa, with particular focus on determining the role of the actin cytoskeleton after mechanical injury. Filamentous actin (F-actin) dynamics was observed by live-cell confocal microscopy in both T. atroviride and N.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!