A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Activation and Conversion of Methane to Syngas over ZrO/Cu(111) Catalysts near Room Temperature. | LitMetric

Activation and Conversion of Methane to Syngas over ZrO/Cu(111) Catalysts near Room Temperature.

J Am Chem Soc

Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States.

Published: April 2023

Enzymatic systems achieve the catalytic conversion of methane at room temperature under mild conditions. In this study, varying thermodynamic and kinetic parameters, we show that the reforming of methane by water (MWR, CH + HO → CO + 3H) and the water-gas shift reaction (WGS, CO + HO → H + CO), two essential processes to integrate fossil fuels toward a H energy loop, can be achieved on ZrO/Cu(111) catalysts near room temperature. Measurements of ambient-pressure X-ray photoelectron spectroscopy and mass spectrometry, combined with density functional calculations and kinetic Monte Carlo simulations, were used to study the behavior of the inverse oxide/metal catalysts. The superior performance is associated with a unique zirconia-copper interface, where multifunctional sites involving zirconium, oxygen, and copper work coordinatively to dissociate methane and water at 300 K and move forward the MWR and WGS processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c01980DOI Listing

Publication Analysis

Top Keywords

room temperature
12
conversion methane
8
zro/cu111 catalysts
8
catalysts room
8
methane water
8
activation conversion
4
methane
4
methane syngas
4
syngas zro/cu111
4
temperature enzymatic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!