AI Article Synopsis

  • Schizophrenia (SZ) and intellectual disability (ID) are linked neurodevelopmental disorders where DNA methylation plays a crucial role in their development.
  • A family study was conducted with four monozygotic twin families to analyze genome-wide methylation changes, identifying differentially methylated positions (DMPs) and regions (DMRs) associated with these disorders.
  • The study found significant DMPs and DMRs related to specific genes, indicating that changes in DNA methylation could impact neurodevelopment and immune system processes in individuals with SZ and ID.

Article Abstract

Objectives: Schizophrenia (SZ) and intellectual disability (ID) are both included in the continuum of neurodevelopmental disorders (NDDs). DNA methylation is known to be important in the occurrence of NDDs. The family study is conducive to eliminate the effects of relative epigenetic backgrounds, and to screen for differentially methylated positions (DMPs) and regions (DMRs) that are truly associated with NDDs.

Methods: Four monozygotic twin families were recruited, and both twin individuals suffered from NDDs (either SZ, ID, or SZ plus ID). Genome-wide methylation analysis was performed in all samples and each family. DMPs and DMRs between NDD patients and unaffected individuals were identified. Functional and pathway enrichment analyses were performed on the annotated genes.

Results: Two significant DMPs annotated to were found in all samples. In Family One, 1476 DMPs mapped to 880 genes, and 162 DMRs overlapping with 153 unique genes were recognised. Our results suggested that the altered methylation levels of , , , and were associated with the development of SZ and ID. Neurodevelopment and the immune system may participate in the occurrence of SZ and ID.

Conclusions: Our findings suggested that DNA methylation participated in the development of NDDs by affecting neurodevelopment and the immune system.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15622975.2023.2198595DOI Listing

Publication Analysis

Top Keywords

dna methylation
12
methylation analysis
8
schizophrenia intellectual
8
intellectual disability
8
samples family
8
neurodevelopment immune
8
immune system
8
methylation
5
genome-wide dna
4
analysis families
4

Similar Publications

Introduction: We conducted a panoramic analysis of GBN5 expression and prognosis in 33 cancers, aiming to deepen the systematic understanding of GBN5 in cancer.

Materials And Methods: We employed a multi-omics approach, including transcriptomic, genomic, proteomic, single-cell cytomic, spatial transcriptomic, and genomic data, to explore the prognostic value and potential oncogenic mechanisms of GBN5 across pan-cancers from multiple perspectives.

Results: We found that GBN5 was differentially expressed in multiple tumors and showed early diagnostic value.

View Article and Find Full Text PDF

The Impact of Modifiable Risk Factors on the Endothelial Cell Methylome and Cardiovascular Disease Development.

Front Biosci (Landmark Ed)

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.

Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.

View Article and Find Full Text PDF

Background/objectives: The DNA methylation of neonatal cord blood can be used to accurately estimate gestational age. This is known as epigenetic gestational age. The greater the difference between epigenetic and chronological gestational age, the greater the association with an inappropriate perinatal fetal environment and development.

View Article and Find Full Text PDF

A Guinea Pig Model of Pediatric Metabolic Dysfunction-Associated Steatohepatitis: Poor Vitamin C Status May Advance Disease.

Nutrients

January 2025

Section of Preclinical Disease Biology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark.

Children and teenagers display a distinct metabolic dysfunction-associated steatohepatitis (MASH) phenotype, yet studies of childhood MASH are scarce and validated animal models lacking, limiting the development of treatments. Poor vitamin C (VitC) status may affect MASH progression and often co-occurs with high-fat diets and related metabolic imbalances. As a regulator of DNA methylation, poor VitC status may further contribute to MASH by regulating gene expression This study investigated guinea pigs-a species that, like humans, depends on vitC in the diet-as a model of pediatric MASH, examining the effects of poor VitC status on MASH hallmarks and global DNA methylation levels.

View Article and Find Full Text PDF

DNA methylation has been widely studied with the goal of correlating the genome profiles of various diseases with epigenetic mechanisms. Multiple approaches have been developed that employ extensive steps, such as bisulfite treatments, polymerase chain reactions (PCR), restriction digestion, sequencing, mass analysis, etc., to identify DNA methylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!