Advances in molecular therapies for targeting pathophysiology in spinal cord injury.

Expert Opin Ther Targets

Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.

Published: March 2023

AI Article Synopsis

  • Spinal cord injury (SCI) affects 25,000-50,000 individuals globally annually, leading to significant damage that is worsened by secondary injuries like inflammation and cell death, with no current cure available.
  • Researchers are exploring various therapeutic methods to repair spinal cord damage, including neuroprotective agents, gene targeting for axon regeneration, and improving neural repair through epigenetic factors and enhancing neuronal connections.
  • While there have been promising advancements in preclinical therapies for SCI, challenges remain in creating effective treatments, boosting neuronal regeneration, and translating successful strategies to human patients.

Article Abstract

Introduction: Spinal cord injury (SCI) affects 25,000-50,000 people around the world each year and there is no cure for SCI patients currently. The primary injury damages spinal cord tissues and secondary injury mechanisms, including ischemia, apoptosis, inflammation, and astrogliosis, further exacerbate the lesions to the spinal cord. Recently, researchers have designed various therapeutic approaches for SCI by targeting its major cellular or molecular pathophysiology.

Areas Covered: Some strategies have shown promise in repairing injured spinal cord for functional recoveries, such as administering neuroprotective reagents, targeting specific genes to promote robust axon regeneration of disconnected spinal fiber tracts, targeting epigenetic factors to enhance cell survival and neural repair, and facilitating neuronal relay pathways and neuroplasticity for restoration of function after SCI. This review focuses on the major advances in preclinical molecular therapies for SCI reported in recent years.

Expert Opinion: Recent progress in developing novel and effective repairing strategies for SCI is encouraging, but many challenges remain for future design of effective treatments, including developing highly effective neuroprotectants for early interventions, stimulating robust neuronal regeneration with functional synaptic reconnections among disconnected neurons, maximizing the recovery of lost neural functions with combination strategies, and translating the most promising therapies into human use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10148912PMC
http://dx.doi.org/10.1080/14728222.2023.2194532DOI Listing

Publication Analysis

Top Keywords

spinal cord
20
molecular therapies
8
cord injury
8
spinal
6
sci
6
cord
5
advances molecular
4
targeting
4
therapies targeting
4
targeting pathophysiology
4

Similar Publications

Purpose: To compare voiding parameters in women with and without increased postvoid residual (PVR) volume, to correlate these parameters with PVR volume and PVR percentage, and to describe their ability to predict an increased PVR volume.

Methods: Retrospective cross-sectional study of urodynamics data prospectively acquired from consecutive symptomatic women over a 5-year period. Patients with spinal cord disorders and with abdominal straining during voiding (abdominal pressure ≥10 cm H2O over baseline at maximum flow rate [Qmax]) were excluded.

View Article and Find Full Text PDF

Purpose: Neurogenic lower urinary tract dysfunction (NLUTD) is highly prevalent among patients with neurologic disorders. Some studies have demonstrated that implantable neuromodulation can improve symptoms of NLUTD. We seek to describe our experience with sacral and pudendal neuromodulation in patients with NLUTD.

View Article and Find Full Text PDF

Advances and applications of peripheral optogenetics in animal models.

Neuroscience

January 2025

CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China. Electronic address:

Peripheral optogenetics is an emerging neuromodulation technique that regulates the activity of the nervous system outside the brain through the expression of photosensitive proteins and the application of photic stimulation. This article reviews recent advances in applying optogenetics to the spinal cord and peripheral nerves, offering a comprehensive understanding of functions and regulatory mechanisms of the peripheral nervous system through the modulation of specific neuronal activities. By showcasing novel opportunities for disease treatment, this technique opens new avenues in the field of psychophysiological research and neural regulation therapy.

View Article and Find Full Text PDF

Spinal cord injuries (SCIs) can lead to severe neuropathic pain and increased risk of myocardial infarction and heart failure; therefore, the use of analgesics against SCI-induced pain should be minimized because of their adverse effects on the cardiovascular system. Ivabradine, a blocker of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, is used as a bradycardic agent, but recent studies focused on it as an analgesic agent for peripheral neuropathic pain. However, the analgesic effects of ivabradine on central neuropathic pain, such as SCI-induced pain, have not been examined.

View Article and Find Full Text PDF

Our extensive basic research on photodynamic therapy (PDT) application in models of intracranial malignant astrocytoma led to its clinical application for intracranial malignant astrocytoma in Japan. Having considered the safety and effectiveness of this pathology, we initiate a first-in-human clinical study of PDT for spinal cord malignant astrocytoma. This study has an open-label, single-arm design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!