Unlabelled: Disturbance can strongly influence ecosystems, yet much remains unknown about the relative importance of key processes (selection, drift, and dispersal) in the recovery of ecological communities following disturbance. We combined field surveys with a field experiment to elucidate mechanisms governing the recovery of aquatic macroinvertebrates in habitats of an alluvial floodplain following flood disturbance. We monitored macroinvertebrates in 24 natural parafluvial habitats over 60 days after a major flood, as well as the colonization of 24 newly-built ponds by macroinvertebrates over 45 days in the same floodplain. We examined the sources of environmental variation and their relative effects on aquatic assemblages using a combination of null models and Mantel tests. We also used a joint species distribution model to investigate the importance of primary metacommunity structuring processes during recovery: selection, dispersal, and drift. Contrary to expectations, we found that beta diversity actually decreased among natural habitats over time after the flood or the creation of the ponds, instead of increasing. This result was despite environmental predictors showing contrasting patterns for explaining community variation over time in the natural habitats compared with the experimental ponds. Flood heterogeneity across the floodplain and spatial scale differences between the experimental ponds and the natural habitats seemingly constrained the balance between deterministic and stochastic processes driving the ecological convergence of assemblages over time. While environmental selection was the dominant structuring process in both groups, biotic interactions also had a prominent influence on community assembly. These findings have profound implications towards understanding metacommunity structuring in riverscapes that includes common linkages between disturbance heterogeneity, spatial scale properties, and community composition.
Supplementary Information: The online version contains supplementary material available at 10.1007/s00027-023-00957-9.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10066089 | PMC |
http://dx.doi.org/10.1007/s00027-023-00957-9 | DOI Listing |
BMC Plant Biol
January 2025
Institute of Grassland Science, School of Life Sciences, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China.
The intricate biogeochemical cycling of multiple elements plays a pivotal role in upholding a myriad of ecosystem functions. However, our understanding of elemental stoichiometry and coupling in response to global changes remains primarily limited to plant carbon: nitrogen: phosphorus (C: N: P). Here, we assessed the responses of 11 elements in plants from different functional groups to global changes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFJ Math Biol
January 2025
Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
In the past several decades, much attention has been focused on the effects of dispersal on total populations of species. In Zhang (EL 20:1118-1128, 2017), a rigorous biological experiment was performed to confirm the mathematical conclusion: Dispersal tends to enhance populations under a suitable hypothesis. In addition, mathematical models keeping track of resource dynamics in population growth were also proposed in Zhang (EL 20:1118-1128, 2017) to understand this remarkable phenomenon.
View Article and Find Full Text PDFSci Rep
January 2025
School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.
View Article and Find Full Text PDFSci Rep
January 2025
College of Ecology and Environment, Hainan University, Haikou, 570228, China.
Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!