The molecular association of proteins with nucleic acids leading to the formation of macromolecular complexes is a crucial step in several biological processes. Stabilization of these complexes involves electrostatic interactions between ion pairs (salt bridges) of nucleic acid phosphates and protein side chains. The crenarchaeal DNA binding protein, Cren7 plays a key role in the regulation of chromosomal structure and gene expression in eukaryotic extremophiles. However, the molecular contacts that occur at the interface of protein-DNA complexes and their contribution to the electrostatic interaction have not been fully elucidated. This work presents a quantitative description of the mechanism of the electrostatic interaction between the protein and DNA. We have identified a few residues located at the Cren7-DNA interface that could potentially be responsible for the interaction. Structural studies using circular dichroism indicate mutation of these surface residues minimally affect their structure and stability. The binding affinity of these mutants for the DNA duplexes was examined from reverse titration, biolayer interferometry, and fluorescence anisotropy measurements with calf thymus DNA, polynucleotides, and small DNA oligonucleotides. The resulting kinetic parameters highlight a difference in electrostatic interactions potentials exhibited by residues positioned at different locations of the protein-DNA interface. Computational studies attribute this difference to their surrounding atmosphere and energetic stabilization parameters. The biophysical approach described here can be extended for other proteins that play a crucial role in DNA bending and compaction, to properly evaluate the role of specific residues on the mechanisms of DNA binding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10183371PMC
http://dx.doi.org/10.1016/j.bpj.2023.03.041DOI Listing

Publication Analysis

Top Keywords

electrostatic interaction
12
molecular contacts
8
electrostatic interactions
8
dna binding
8
dna
7
electrostatic
5
contacts cren7-dna
4
cren7-dna complex
4
complex quantitative
4
quantitative investigation
4

Similar Publications

Developing new materials capable of the safe and efficient removal of toxic substances has become a research hotspot in the field of materials science, as these toxic substances pose a serious threat to human health, both directly and indirectly. Covalent organic frameworks (COFs), as an emerging class of crystalline porous materials, have advantages such as large specific surface area, tunable pore size, designable structure, and good biocompatibility, which have been proven to be a superior adsorbent design platform for toxic substances capture. This review will summarize the synthesis methods of COFs and the properties and characteristics of typical toxicants, discuss the design strategies of COF-based adsorbents for the removal of toxic substances, and highlight the recent advancements in COF-based adsorbents as robust candidates for the efficient removal of various types of toxicants, such as animal toxins, microbial toxins, phytotoxins, environmental toxins, The adsorption performance and related mechanisms of COF-based adsorbents for different types of toxic substances will be discussed.

View Article and Find Full Text PDF

The ground-state charge generation (GSCG) in photoactive layers determines whether the photogenerated carriers occupy the deep trap energy levels, which, in turn, affects the device performance of organic solar cells (OSCs). In this work, charge-quadrupole electrostatic interactions are modulated to achieve GSCG through a molecular strategy of introducing different numbers of F atom substitutions on the BTA3 side chain. The results show that 8F substitution (BTA3-8F) and 16F substitution (BTA3-16F) lead to different patterns of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy level changes.

View Article and Find Full Text PDF

During the blood coagulation cascade, coagulation factor VIII (FVIII) is activated by thrombin to form activated factor VIII (FVIIIa). FVIIIa associates with platelet surfaces at the site of vascular damage to form an intrinsic tenase complex with activated factor IX. A working model for FVIII membrane binding involves the association of positively charged FVIII residues with negatively charged lipid headgroups and the burial of hydrophobic residues into the membrane interior.

View Article and Find Full Text PDF

A novel micelleplex for tumour-targeted delivery of CRISPR-Cas9 against KRAS-mutated lung cancer.

Nanoscale

January 2025

Ludwig-Maximilians-University, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandtstraße 5-13, Munich, 81377, Germany.

CRISPR-Cas9 has emerged as a highly effective and customizable genome editing tool, holding significant promise for the treatment of KRAS mutations in lung cancer. In this study, we introduce a novel micelleplex, named C14-PEI, designed to co-deliver Cas9 mRNA and sgRNA efficiently to excise the mutated KRAS allele in lung cancer cells. C14-PEI is synthesised from 1,2-epoxytetradecane and branched PEI 600 Da a ring-opening reaction.

View Article and Find Full Text PDF

Intermolecular hydrogen bonds between carboxyl (COO) and amino groups are a common weak interaction in proteins. Infrared (IR) spectral assignment of such an intermolecular hydrogen bond provides a fingerprint for studying protein-protein interactions as its absorption frequency is affected by the molecular electrostatic environment. Temperature-dependent FTIR and temperature-jump time-resolved IR absorbance difference spectra of several typical amino acids and those of wild type and single-site mutated αB-crystallin were performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!