A new nonfullerene acceptor (NFA), BTA-ERh, was synthesized and integrated into a PM6:Y7:PCBM ternary system to regulate the blend film morphology for enhanced device performance. Due to BTA-ERh's good miscibility with host active blend films, an optimized film morphology was obtained with appropriate phase separation and fine-tuning of film crystallinity, which ultimately resulted in efficient exciton dissociation, charge transport, lower recombination loss, and decreased trap-state density. The resulting additive-free quaternary devices achieved a remarkable efficiency of 18.90%, with a high voltage, fill factor, and current density of 0.87 V, 76.32%, and 28.60 mA cm, respectively. By adding less of a new small molecule with high crystallinity, the favorable nanomorphology shape of blend films containing NFAs might be adjusted. Consequently, this strategy can enhance photovoltaic device performance for cutting-edge NFA-based organic solar cells (OSCs). In contrast, the additive-free OSCs exhibited good operational stability. More importantly, large-area modules with the quaternary device showed a remarkable efficiency of 12.20%, with an area as high as 55 cm (substrate size, 100 cm) in an air atmosphere D-bar coating. These results highlight the enormous research potential for a multicomponent strategy for future additive-free OSC applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c01121 | DOI Listing |
Microsc Res Tech
January 2025
Department of Computer Science, Cihan University, Sulaimaniyah, Kurdistan Region, Iraq.
Waveguide evanescent field fluorescence microscopy (WEFF) is an evanescent-based microscopy that utilizes a confined thin film of light, around 100 nm, to image the plasma membrane of cells attached to a waveguide. Low photobleaching and low background besides its high axial resolution allows time-lapse imaging to investigate changes in cell morphology in the presence or absence of chemical agents. Both large field of view (FOV) and uniform illumination are very important while imaging cell-substrate contacts with an evanescent field.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China. Electronic address:
The pyrolysis coking of hydrocarbon fuel during active cooling has a significant impact on engine performance. The implementation of a passivation layer with a high aspect ratio within the cooling channel is considered to be an effective approach. The achievement of ultra-thin coatings with high permeability, exceptional mechanical properties, outstanding oxidation resistance, while preserving the physical and chemical characteristics of the substrate and the coating morphology remains a formidable challenge.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Chemical Engineering, Bioengineering and Biomass Valorization Laboratory, Federal University of Ceará, Fortaleza, Ceará 60020-181, Brazil.
Cellulose nanostructures obtained from lignocellulosic biomass via enzymatic processes may offer advantages in terms of material properties and processing sustainability. Thus, in this study, cellulose nanoparticles with a spherical morphology were produced through the enzymatic hydrolysis of cashew apple bagasse (CAB). CAB was previously subjected to alkaline and acid-alkali pretreatment, and the pretreated solids were labeled as CAB-PTA and CAB-PT-HA, respectively.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
The pervasive use of petroleum-based food packaging has caused significant ecological damage due to their unsustainability and non-biodegradability. Polysaccharide-based biodegradable materials are promising alternatives, but low hydrophobicity and functional properties limit their practical applications which can be overcome by incorporation of phytochemical(s). Therefore, by leveraging the strong antioxidant and antibacterial potential of pterostilbene (PTB), we have developed PTB nanoemulsion (NE) incorporated chitosan/sodium alginate (CS/SA) film for food packaging applications.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Examining the mechanical properties of polymer thin films is crucial for high-performance applications such as displays, coatings, sensors, and thermal management. It is important to design thin film microstructures that excel in high-demand situations without compromising mechanical integrity. Here, a polymer blend of polystyrene (PS) and polyisoprene (PI) is used as a model to explore microscale deformation behavior under uniaxial mechanical testing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!