Background: Opioids accounted for 75% of drug overdoses in the USA in 2020, with rural states particularly impacted by the opioid crisis. While medication-assisted treatment (MAT) with Suboxone remains one of the more efficacious treatments for opioid use disorder (OUD), approximately 40% of people receiving Suboxone for outpatient MAT for OUD (MOUD) relapse within the first 6 months of treatment. We developed the smartphone app-based intervention OptiMAT as an adjunctive intervention to improve MOUD outcomes. The aims of this study are to (1) evaluate the efficacy of adjunctive OptiMAT use in reducing opioid misuse among people receiving MOUD and (2) evaluate the role of specific OptiMAT features in reducing opioid misuse, including the use of GPS-driven just-in-time intervention.
Methods: We will conduct a two-arm, single-blind, randomized controlled trial of adults receiving outpatient MOUD in the greater Little Rock AR area. Participants are English-speaking adults ages 18 or older recently enrolled in outpatient MOUD at one of our participating study clinics. Participants will be allocated via 1:1 randomized block design to (1) MOUD with adjunctive use of OptiMAT (MOUD+OptiMAT) or (2) MOUD without OptiMAT (MOUD-only). Our blinded research statistician will evaluate differences between the two groups in opioid misuse (as determined by quantitative urinalysis conducted by clinical lab staff blinded to group membership) during the 6-months following study enrolment. Secondary analyses will evaluate if OptiMAT-usage patterns within the MOUD+OptiMAT group predict opioid misuse or continued abstinence.
Discussion: This study will test if adjunctive use of OptiMAT improve MOUD outcomes. Study findings could lead to expansion of OptiMAT into rural clinical settings, and the identification of OptiMAT features which best predict positive clinical outcome could lead to refinement of this and similar smartphone app-based interventions.
Trial Registration: ClinicalTrials.gov identifier: NCT05336188 , registered March 21, 2022.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10071730 | PMC |
http://dx.doi.org/10.1186/s13063-023-07213-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!