Hybrid polyvinylidene fluoride-silica-hexadecyltrimethoxysilane (PVDF-SiO-HDTMS) membranes were fabricated via a non-solvent-induced phase-inversion method to create stable hollow-fiber membranes for use in the membrane contact absorption of carbon dioxide (CO). The surface properties, performance characteristics, and long-term performance stability of the prepared membranes were compared and analyzed. The outer surfaces of the prepared membranes were superhydrophobic because of the formation of rough nanoscale microstructures on the surfaces and their low surface free energy. The addition of inorganic nanoparticles improved the mechanical strength of the PVDF-SiO-HDTMS. Long-term stable operation experiments were carried out with a mixed inlet gas (CO/N = 19/81, v/v) at a flow rate of 20 mL/min. The absorbent liquid in these experiments was 1 mol/L diethanolamine (DEA) at a flow rate of 50 mL/min. The mass transfer flux of CO through the PVDF-SiO-HDTMS membrane decreased from an initial value of 2.39 × 10 mol/ms to 2.31 × 10 mol/ms, a decrease of 3% after 20 days. The addition of highly stable and hydrophobic inorganic nanoparticles prevented pore wetting and structural damage to the membrane. The PVDF-SiO-HDTMS membrane was found to have excellent long-term stable performance in absorbing CO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073106 | PMC |
http://dx.doi.org/10.1038/s41598-023-31428-8 | DOI Listing |
Chem Sci
January 2025
School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University Chongqing 401331 China
Atomically precise gold nanoclusters have shown great promise as model electrocatalysts in pivotal electrocatalytic processes such as the hydrogen evolution reaction (HER) and carbon dioxide reduction reaction (CORR). Although the influence of ligands on the electronic properties of these nanoclusters is well acknowledged, the ligand effects on their electrocatalytic performances have been rarely explored. Herein, using [Au(SR)] nanoclusters as a prototype model, we demonstrated the importance of ligand hydrophilicity hydrophobicity in modulating the interface dynamics and electrocatalytic performance.
View Article and Find Full Text PDFJ Med Surg Public Health
December 2024
College of Nursing, Michigan State University, Michigan, Life Science, 1355 Bogue St Room A218, East Lansing, MI 48824, USA.
In-hospital cardiac arrest (IHCA) has been understudied relative to out-of-hospital cardiac arrest. Further, studies of IHCA have mainly focused on a limited number of pre-arrest patient characteristics (e.g.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
The estimation of CO emission factors (EFs) is a key step in calculating automobile CO emissions. However, city-level research on the integrated estimation of vehicle CO EFs under real conditions is insufficient. To enrich the research methods of city-level vehicle CO EFs, this paper constructs a vehicle-road-driver three-layer regression model and estimates vehicle CO EFs empirical parameters for Tianjin.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Bolzano, Italy.
The ecophysiological and ecohydrological impacts of climate change and progressively increasing atmospheric carbon dioxide (CO) concentration on agroecosystems are not well understood compared to the forest ecosystems. In this study, we utilized the presence of old apple and pear trees in the alpine valleys of Northern Italy (maintained for cultural heritage purposes) to investigate climate-scale physiological responses. We developed long-term tree-ring stable isotopic records (δC and δO) from apple (1976-2021) and pear trees (1943-2021).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Peking University Shenzhen Graduate School, Shool of Chemical Biology and Biotechnology, Lishui Road, Nanshan District, -, Shenzhen, CHINA.
Regulating the coordination environment of active sites has proved powerful for tapping into their catalytic activity and selectivity in homogeneous catalysis, yet the heterogeneous nature of copper single-atom catalysts (SACs) makes it challenging. This work reports a bottom-up approach to construct a SAC (rGO@Cu-N(Hx)-C) by inlaying preformed amine coordinated Cu2+ units into reduced graphene oxide (rGO), permitting molecular level revelation on how the proximal N-site functional groups (N-H or N-CH3) impact on the carbon dioxide reduction reaction (CO2RR). It is demonstrated that the N-H moiety of rGO@Cu-NHx-C can serve as an in-situ protonation agent to accelerate the CO2-to-methane reduction kinetics, delivering a methane current density (163 mA/cm2) 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!