Despite spectacular progress in microfluidics, small-scale liquid manipulation, with few exceptions, is still driven by external pumps and controlled by large-scale valves, increasing cost and size and limiting complexity. By contrast, optofluidics uses light to power, control and monitor liquid manipulation, potentially allowing for small, self-contained microfluidic devices. Here we demonstrate a soft light-propelled actuator made of liquid crystal gel that pumps microlitre volumes of water. The strip of actuating material serves as both a pump and a channel leading to an extremely simple microfluidic architecture that is both powered and controlled by light. The performance of the pump is well explained by a simple theoretical model in which the light-induced bending of the actuator competes with the liquid's surface tension. The theory highlights that effective pumping requires a threshold light intensity and strip width. The proposed system explores the benefits of shifting the complexity of microfluidic systems from the fabricated device to spatio-temporal control over stimulating light patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10073117PMC
http://dx.doi.org/10.1038/s41467-023-37445-5DOI Listing

Publication Analysis

Top Keywords

liquid manipulation
8
light-driven peristaltic
4
peristaltic pumping
4
pumping actuating
4
actuating splay-bend
4
splay-bend strip
4
strip despite
4
despite spectacular
4
spectacular progress
4
progress microfluidics
4

Similar Publications

The Science of Nanostructure Acoustic Vibrations.

Annu Rev Phys Chem

January 2025

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA;

Ultrafast excitation of nanoparticles can excite the acoustic vibrational modes of the structure that correlate with the expansion coordinates. These modes are frequently seen in transient absorption experiments on metal nanoparticle samples and occasionally for semiconductors. The aim of this review is to give an overview of the physical chemistry of nanostructure acoustic vibrations.

View Article and Find Full Text PDF

On-Chip Stimulated Raman Scattering Imaging and Quantification of Molecular Diffusion in Aqueous Microfluidics.

Anal Chem

January 2025

State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China.

Numerous chemical reactions and most life processes occur in aqueous solutions, where the physical diffusion of small molecules plays a vital role, including solvent water molecules, solute biomolecules, and ions. Conventional methods of measuring diffusion coefficients are often limited by technical complexity, large sample consumption, or significant time cost. Here, we present an optical imaging method to study molecular diffusion by combining stimulated Raman scattering (SRS) microscopy with microfluidics: a "Y"-shaped microfluidic channel forming two laminar flows with a stable concentration gradient across the interface.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have emerged as solubilizing media of intense interest due partly to their easily tailorable physicochemical properties. Extensive H-bonding between the constituents in a two-constituent system is the major driving force for the formation of the DES. Addition of ethanolamine (MEA), a compound having H-bonding capabilities, to the DESs composed of a terpene [menthol (Men) or thymol (Thy)] and a fatty acid [-decanoic acid (DA)] results in an unprecedented increase in dynamic viscosity due to the extensive rearrangement in the H-bonding network and other interactions within the system, while the liquid mixture still behaves as a Newtonian fluid.

View Article and Find Full Text PDF

Bicontinuous structures are exquisite interpenetrating constructs with an optimal balance between connectivity and surface area. Such unique geometry favors exceptional mechanical properties and efficient inward mass diffusion essential for an absorbent material. Although bicontinuous structures are found across many length scales in nature, synthesizing artificial analogs using biological building blocks remains largely unexplored.

View Article and Find Full Text PDF

Cancer immunotherapy-including immune checkpoint inhibition (ICI) and adoptive cell therapy (ACT)-has become a standard, potentially curative treatment for a subset of advanced solid and liquid tumors. However, most patients with cancer do not benefit from the rapidly evolving improvements in the understanding of principal mechanisms determining cancer immune responsiveness (CIR); including patient-specific genetically determined and acquired factors, as well as intrinsic cancer cell biology. Though CIR is multifactorial, fundamental concepts are emerging that should be considered for the design of novel therapeutic strategies and related clinical studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!