Three hexacarbonyl diiron dithiolate complexes [Fe (CO) (μ-(SCH ) X)] with different substituted bridgeheads (X=CH , CEt , CBn (Bn=CH C H )), have been studied under the same experimental conditions by cyclic voltammetry in dichloromethane [NBu ][PF ] 0.2 M. DFT calculations were performed to rationalize the mechanism of reduction of these compounds. The three complexes undergo a two-electron transfer whose the mechanism depends on the bulkiness of the dithiolate bridge, which involves a different timing of the structural changes (Fe-S bond cleavage, inversion of conformation and CO bridging) vs redox steps. The introduction of a bulky group in the dithiolate linker has obviously an effect on normally ordered (as for propanedithiolate (pdt)) or inverted (pdt , pdt ) reduction potentials. Et→Bn replacement is not theoretically predicted to alter the geometry and energy of the most stable mono-reduced and bi-reduced forms but such a replacement alters the kinetics of the electron transfer vs the structural changes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202300569DOI Listing

Publication Analysis

Top Keywords

reduction potentials
8
structural changes
8
normal inverted
4
inverted ordering
4
ordering reduction
4
potentials [fefe]-hydrogenases
4
[fefe]-hydrogenases biomimetics
4
dithiolate
4
biomimetics dithiolate
4
dithiolate bulk
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!