In this article, the problem of impulse noise image restoration is investigated. A typical way to eliminate impulse noise is to use an L norm data fitting term and a total variation (TV) regularization. However, a convex optimization method designed in this way always yields staircase artifacts. In addition, the L norm fitting term tends to penalize corrupted and noise-free data equally, and is not robust to impulse noise. In order to seek a solution of high recovery quality, we propose a new variational model that integrates the nonconvex data fitting term and the nonconvex TV regularization. The usage of the nonconvex TV regularizer helps to eliminate the staircase artifacts. Moreover, the nonconvex fidelity term can detect impulse noise effectively in the way that it is enforced when the observed data is slightly corrupted, while is less enforced for the severely corrupted pixels. A novel difference of convex functions algorithm is also developed to solve the variational model. Using the variational method, we prove that the sequence generated by the proposed algorithm converges to a stationary point of the nonconvex objective function. Experimental results show that our proposed algorithm is efficient and compares favorably with state-of-the-art methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2022.3225525DOI Listing

Publication Analysis

Top Keywords

impulse noise
20
variational model
12
fitting term
12
noise image
8
image restoration
8
difference convex
8
convex functions
8
functions algorithm
8
data fitting
8
staircase artifacts
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!