A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A decision support system for the identification of metastases of Metastatic Melanoma using whole-body FDG PET/CT images. | LitMetric

AI Article Synopsis

  • Metastatic Melanoma is a fast-spreading cancer with low survival rates, making quick diagnosis and treatment crucial for patient management.
  • The study introduces a whole-body segmentation framework using FDG-PET/CT images, aiming to accurately identify melanoma tumors by combining functional and anatomical imaging data.
  • Experimental results show the proposed method effectively detects MM lesions, achieving high sensitivity (83.68%), specificity (91.82%), and overall accuracy, showcasing its potential for improving diagnosis and treatment.

Article Abstract

Metastatic Melanoma (MM) is an aggressive type of cancer which produces metastases throughout the body with very poor survival rates. Recent advances in immunotherapy have shown promising results for controlling disease's progression. Due to the often rapid progression, fast and accurate diagnosis and treatment response assessment is vital for the whole patient management. These procedures prerequisite accurate, whole-body tumor identification. This can be offered by the imaging modality Positron Emission Tomography (PET)/Computed Tomography (CT) with the radiotracer F 18-Fluorodeoxyglucose (FDG). However, manual segmentation of PET/CT images is a very time-consuming and labor intensive procedure that requires expert knowledge. Most of the previously published segmentation techniques focus on a specific type of tumor or part of the body and require a great amount of manually labeled data, which is, however, difficult for MM. Multimodal analysis of PET/CT is also crucial because FDG-PET contains only the functional information of tumors which can be complemented by the anatomical information of CT. In this paper, we propose a whole-body segmentation framework capable of efficiently identifying the highly heterogeneous tumor lesions of MM from the whole-body 3D FDG-PET/CT images. The proposed decision support system begins with an Ensemble Unsupervised Segmentation of regions of high FDG-uptake based on Fuzzy C-means and a custom region growing algorithm. Then, a region classification model based on radiomics features and Neural Networks classifies these regions as tumors or not. Experimental results showed high performance in the identification of MM lesions with Sensitivity 83.68%, Specificity 91.82%, F1-score 75.42%, AUC 94.16% and Balanced accuracy 87.75% which were also supported by the public dataset evaluation.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2022.3230060DOI Listing

Publication Analysis

Top Keywords

decision support
8
support system
8
metastatic melanoma
8
pet/ct images
8
system identification
4
identification metastases
4
metastases metastatic
4
whole-body
4
melanoma whole-body
4
whole-body fdg
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: