A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

NIM-Nets: Noise-aware Incomplete Multi-view Learning Networks. | LitMetric

Data in real world are usually characterized in multiple views, including different types of features or different modalities. Multi-view learning has been popular in the past decades and achieved significant improvements. In this paper, we investigate three challenging problems in the field of incomplete multi-view representation learning, namely, i) how to reduce the influences produced by missing views in multi-view dataset, ii) how to learn a consistent and informative representation among different views and iii) how to alleviate the impacts of the inherent noise in multi-view data caused by high-dimensional features or varied quality for different data points. To address these challenges, we integrate these three tasks into a problem and propose a novel framework termed Noise-aware Incomplete Multi-view Learning Networks (NIM-Nets). NIM-Nets fully utilize incomplete data from different views to produce a multi-view shared representation which is consistent, informative and robust to noise. We model the inherent noise in data by defining the distribution Γ and assuming that each observation in the incomplete dataset is sampled from the distribution Γ. To the best of our knowledge, this is the first work to unify learning the consistent and informative representation, alleviating the impacts of noise in data and handling the view-missing patterns in multi-view learning into a framework. We also first give a definition of robustness and completeness for incomplete multi-view representation learning. Based on NIM-Nets, we present joint optimization models for classification and clustering, respectively. Extensive experiments on different datasets demonstrate the effectiveness of our method over the existing work based on classification and clustering tasks in terms of different metrics.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2022.3226408DOI Listing

Publication Analysis

Top Keywords

incomplete multi-view
16
multi-view learning
16
consistent informative
12
multi-view
9
noise-aware incomplete
8
learning networks
8
multi-view representation
8
representation learning
8
informative representation
8
inherent noise
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!