A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Kalman Variational Autoencoder Model assisted by Odometric Clustering for Video Frame Prediction and Anomaly Detection. | LitMetric

The combination of different sensory information to predict upcoming situations is an innate capability of intelligent beings. Consequently, various studies in the Artificial Intelligence field are currently being conducted to transfer this ability to artificial systems. Autonomous vehicles can particularly benefit from the combination of multi-modal information from the different sensors of the agent. This paper proposes a method for video-frame prediction that leverages odometric data. It can then serve as a basis for anomaly detection. A Dynamic Bayesian Network framework is adopted, combined with the use of Deep Learning methods to learn an appropriate latent space. First, a Markov Jump Particle Filter is built over the odometric data. This odometry model comprises a set of clusters. As a second step, the video model is learned. It is composed of a Kalman Variational Autoencoder modified to leverage the odometry clusters for focusing its learning attention on features related to the dynamic tasks that the vehicle is performing. We call the obtained overall model Cluster-Guided Kalman Variational Autoencoder. Evaluation is conducted using data from a car moving in a closed environment [1] and leveraging a part of the University of Alcalá DriveSet dataset [2], where several drivers move in a normal and drowsy way along a secondary road.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2022.3229620DOI Listing

Publication Analysis

Top Keywords

kalman variational
12
variational autoencoder
12
anomaly detection
8
odometric data
8
model
4
autoencoder model
4
model assisted
4
assisted odometric
4
odometric clustering
4
clustering video
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!