Neural architecture search (NAS) can automatically discover well-performing architectures in a large search space and has been shown to bring improvements to various applications. However, the computational burden of NAS is huge, since exploring a large search space can need evaluating more than thousands of architecture samples. To improve the sample efficiency of search space exploration, predictor-based NAS methods learn a performance predictor of architectures, and utilize the predictor to sample worth-evaluating architectures. The encoding scheme of NN architectures is crucial to the predictor's generalization ability, and thus crucial to the efficacy of the NAS process. To this end, we have designed a generic Graph-based neural ArchiTecture Encoding Scheme (GATES), a more reasonable modeling of NN architectures that mimics their data processing. Nevertheless, GATES is unaware of the concrete computing semantic of NN operations or architectures. Thus, the learning of operation embeddings and weights in GATES can only exploit the information in architectures-performance pairs. We propose GATES++, which incorporates multifaceted information about NN's operation-level and architecture-level computing semantics into its construction and training, respectively. Experiments on benchmark search spaces show that both the operation-level and architecture-level information can bring improvements alone, and GATES++ can discover better architectures after evaluating the same number of architectures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2022.3228604 | DOI Listing |
Brain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Faculty of Medicine and Pharmacy of Rabat, Mohammed V University of Rabat, Rabat, 10000, Morocco.
Gastrointestinal (GI) disease examination presents significant challenges to doctors due to the intricate structure of the human digestive system. Colonoscopy and wireless capsule endoscopy are the most commonly used tools for GI examination. However, the large amount of data generated by these technologies requires the expertise and intervention of doctors for disease identification, making manual analysis a very time-consuming task.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
January 2025
School of Psychological Sciences, Sagol School of Neuroscience, Tel-Aviv University.
Background: Although combat-deployed soldiers are at a high risk for developing trauma-related psychopathology, most will remain resilient for the duration and aftermath of their deployment tour. The neural basis of this type of resilience is largely unknown, and few longitudinal studies exist on neural adaptation to combat in resilient individuals for whom a pre-exposure measurement was collected. Here, we delineate changes in the architecture of functional brain networks from pre- to post-combat in psychopathology-free, resilient participants.
View Article and Find Full Text PDFPLoS One
January 2025
School of Civil and Architectural Engineering, Harbin University, Harbin, China.
This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm-Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!