The replacement of benzene rings with sp-hybridized bioisosteres in drug candidates generally improves pharmacokinetic properties while retaining biological activity. Rigid, strained frameworks such as bicyclo[1.1.1]pentane and cubane are particularly well suited as the ring strain imparts high bond strength and thus metabolic stability on their C-H bonds. Cubane is the ideal bioisostere as it provides the closest geometric match to benzene. At present, however, all cubanes in drug design, like almost all benzene bioisosteres, act solely as substitutes for mono- or para-substituted benzene rings. This is owing to the difficulty of accessing 1,3- and 1,2-disubstituted cubane precursors. The adoption of cubane in drug design has been further hindered by the poor compatibility of cross-coupling reactions with the cubane scaffold, owing to a competing metal-catalysed valence isomerization. Here we report expedient routes to 1,3- and 1,2-disubstituted cubane building blocks using a convenient cyclobutadiene precursor and a photolytic C-H carboxylation reaction, respectively. Moreover, we leverage the slow oxidative addition and rapid reductive elimination of copper to develop C-N, C-C(sp), C-C(sp) and C-CF cross-coupling protocols. Our research enables facile elaboration of all cubane isomers into drug candidates, thus enabling ideal bioisosteric replacement of ortho-, meta- and para-substituted benzenes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680098PMC
http://dx.doi.org/10.1038/s41586-023-06021-8DOI Listing

Publication Analysis

Top Keywords

benzene bioisosteres
8
benzene rings
8
drug candidates
8
drug design
8
13- 12-disubstituted
8
12-disubstituted cubane
8
cubane
7
benzene
5
general access
4
access cubanes
4

Similar Publications

Modular access to saturated bioisosteres of anilines via photoelectrochemical decarboxylative C(sp)-N coupling.

Nat Commun

January 2025

Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China.

In drug development, the substitution of benzene rings in aniline-based drug candidates with saturated bridged bicyclic ring systems often enhances pharmacokinetic properties while preserving biological activity. However, current efforts predominantly focuses on bicyclo[1.1.

View Article and Find Full Text PDF

Recent Advances in Radical Coupling Reactions Directly Involving Bicyclo[1.1.1]pentane (BCP).

Top Curr Chem (Cham)

January 2025

School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.

BCP (bicyclo[1.1.1]pentane) is an ideal saturated carbon bioisostere, instead of the traditional benzene group, which has been extensively developed.

View Article and Find Full Text PDF

In 2012, bicyclo[1.1.1]pentanes were demonstrated to be bioisosteres of the benzene ring.

View Article and Find Full Text PDF

The high percentage of sp-hybridized carbons and the presence of chiral carbon centers could contribute to increased molecular complexity, enhancing the likelihood of clinical success of drug candidates. Three-dimensional (3D) bridged motifs have recently garnered significant interest in medicinal chemistry. Bicyclo[2.

View Article and Find Full Text PDF

Ring Expansion toward Fused Diazabicyclo[3.1.1]heptanes through Lewis Acid Catalyzed Highly Selective C-C/C-N Bond Cross-Exchange Reaction between Bicyclobutanes and Diaziridines.

Angew Chem Int Ed Engl

January 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, P. R. China.

Article Synopsis
  • Bicyclic scaffolds are important in drug discovery due to their ability to resemble benzene structures.
  • This study presents a novel method using a Lewis acid catalyst to facilitate a reaction between bicyclobutanes and diaziridines, yielding valuable azabicyclo[3.1.1]heptane compounds with high efficiency.
  • The research also successfully scaled up the process and introduced a chiral zinc-based catalyst to promote enantioselective synthesis, achieving significant optical purity.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!