Agricultural biomass waste such as corn cob is available in large quantities and can be used as renewable materials for various applications. Corn cob was converted into nanocrystalline cellulose by using mild sulfuric acid concentrations (30 % w/v) at low temperature (50 °C) and a relatively shorter time extraction (30 min) combined with mechanical treatment using a conventional high-speed blender. NCC from cellulose and α-cellulose from corn cobs have been successfully isolated with relatively high yields and crystallinities of 50.07-65.33 % and 65.5-69.9 %, respectively. Scanning electron microscopy (SEM) evaluated the morphological variation and dimension from corn cob fiber (CF), delignification fiber (DF), cellulose, and α-cellulose, which shows that each pretreatment stage causes a decrease in fiber diameter from 16.56 to 5.48 μm. Transmission electron microscopy (TEM) images confirmed the nano-scale dimension with fiber diameters ranging between 9.35 nm and 6.51 nm. Thermogravimetric analysis shows that NCC has relatively high thermal stability ranging from 429 to 437 °C. Thus, this characteristic of NCC has the potential to be applied as a reinforcing agent in various fields of polymer composites. Finally, this study presents a method for isolating NCC from corncob waste using a conventional high-speed blender in a mild condition process with a relatively low cost, environmentally friendly pathway, and high yield that was still preserved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.124327 | DOI Listing |
Heliyon
January 2025
Department of Botany, University of Dhaka, Dhaka, 1000, Bangladesh.
Maize is a cornerstone of global agriculture, essential for food security, livestock feed, and industrial uses. With the increasing demand for maize due to population growth and changing dietary patterns, there is a pressing need to enhance maize production. Hybridization is a strategic approach for developing high-yielding and stress-tolerant maize varieties and evaluating these hybrids in specific environmental conditions is vital for optimizing yield and adaptability.
View Article and Find Full Text PDFBioresour Technol
January 2025
School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China. Electronic address:
Lignocellulosic biomass is the most abundant form of biomass available for fuel production, serving as the fourth leading energy source globally. However, inhibitors generated during pretreatment processes often hinder fermentation performance and conversion efficiency. In this study, we developed an enhanced computer-assisted enzyme cocktail strategy (ComEC 2.
View Article and Find Full Text PDFJ Agric Food Res
December 2024
Center for Indigenous Health Research, Wuqu' Kawoq|Maya Health Alliance, Tecpan, Chimaltenango, 04006, Guatemala.
Fungal toxins in local food supplies are a critical environmental health risk to communities globally. To better characterize hypothesized toxin control points among households, we conducted household surveys across four departments (first administrative division) in Guatemala. Data gathered included maize harvesting, processing, storage, and traditional nixtamalization practices.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy.
Paramutation, a specific epigenetic phenomenon first identified in by Alexander Brink in the 1950s, has since been observed in different plant and animal species. What sets paramutation apart from other gene silencing processes is its ability for one silenced allele (referred to as paramutagenic) to silence another allele (paramutable) in trans. The resultant silenced allele (paramutated) remains stable across generations, even after separating from the paramutagenic allele, and acquires paramutagenic properties itself.
View Article and Find Full Text PDFNat Commun
December 2024
Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!