A brain-computer interface (BCI) is a system that allows a human operator to use only mental commands in controlling end effectors that interact with the world around them. Such a system consists of a measurement device to record the human user's brain activity, which is then processed into commands that drive a system end effector. BCIs involve either invasive measurements which allow for high-complexity control but are generally infeasible, or noninvasive measurements which offer lower quality signals but are more practical to use. In general, BCI systems have not been developed that efficiently, robustly, and scalably perform high-complexity control while retaining the practicality of noninvasive measurements. Here we leverage recent results from feedback information theory to fill this gap by modeling BCIs as a communications system and deploying a human-implementable interaction algorithm for noninvasive control of a high-complexity robot swarm. We construct a scalable dictionary of robotic behaviors that can be searched simply and efficiently by a BCI user, as we demonstrate through a large-scale user study testing the feasibility of our interaction algorithm, a user test of the full BCI system on (virtual and real) robot swarms, and simulations that verify our results against theoretical models. Our results provide a proof of concept for how a large class of high-complexity effectors (even beyond robotics) can be effectively controlled by a BCI system with low-complexity and noisy inputs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2023.3257261 | DOI Listing |
Sci Rep
January 2025
Department of Biomedical Engineering, School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.
Steady-State Visually Evoked Potential (SSVEP) signals can be decoded by either a traditional machine learning algorithm or a deep learning network. Combining the two methods is expected to enhance the performance of an SSVEP-based brain-computer interface (BCI) by exploiting their advantages. However, an efficient strategy for integrating the two methods has not yet been established.
View Article and Find Full Text PDFBMC Bioinformatics
December 2024
College of Computer and Information Engineering/College of Artificial Intelligence, Nanjing Tech University, Nanjing, 210093, China.
Background: The collection of substantial amounts of electroencephalogram (EEG) data is typically time-consuming and labor-intensive, which adversely impacts the development of decoding models with strong generalizability, particularly when the available data is limited. Utilizing sufficient EEG data from other subjects to aid in modeling the target subject presents a potential solution, commonly referred to as domain adaptation. Most current domain adaptation techniques for EEG decoding primarily focus on learning shared feature representations through domain alignment strategies.
View Article and Find Full Text PDFNPJ Sci Learn
December 2024
Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China.
Comput Biol Med
December 2024
Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Bharti School of Telecommunication, Indian Institute of Technology Delhi, New Delhi 110016, India; Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi 110016, India. Electronic address:
Background: Electroencephalogram (EEG) signals-based motor kinematics prediction (MKP) has been an active area of research to develop Brain-computer interface (BCI) systems such as exosuits, prostheses, and rehabilitation devices. However, EEG source imaging (ESI) based kinematics prediction is sparsely explored in the literature.
Method: In this study, pre-movement EEG features are utilized to predict three-dimensional (3D) hand kinematics for the grasp-and-lift motor task.
J Biomed Phys Eng
December 2024
Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Background: The P300 signal, an endogenous component of event-related potentials, is extracted from an electroencephalography signal and employed in Brain-computer Interface (BCI) devices.
Objective: The current study aimed to address challenges in extracting useful features from P300 components and detecting P300 through a hybrid unsupervised manner based on Convolutional Neural Network (CNN) and Long Short-term Memory (LSTM).
Material And Methods: In this cross-sectional study, CNN as a useful method for the P300 classification task emphasizes spatial characteristics of data.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!