A brain-computer interface (BCI) is a system that allows a human operator to use only mental commands in controlling end effectors that interact with the world around them. Such a system consists of a measurement device to record the human user's brain activity, which is then processed into commands that drive a system end effector. BCIs involve either invasive measurements which allow for high-complexity control but are generally infeasible, or noninvasive measurements which offer lower quality signals but are more practical to use. In general, BCI systems have not been developed that efficiently, robustly, and scalably perform high-complexity control while retaining the practicality of noninvasive measurements. Here we leverage recent results from feedback information theory to fill this gap by modeling BCIs as a communications system and deploying a human-implementable interaction algorithm for noninvasive control of a high-complexity robot swarm. We construct a scalable dictionary of robotic behaviors that can be searched simply and efficiently by a BCI user, as we demonstrate through a large-scale user study testing the feasibility of our interaction algorithm, a user test of the full BCI system on (virtual and real) robot swarms, and simulations that verify our results against theoretical models. Our results provide a proof of concept for how a large class of high-complexity effectors (even beyond robotics) can be effectively controlled by a BCI system with low-complexity and noisy inputs.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2023.3257261DOI Listing

Publication Analysis

Top Keywords

bci system
12
brain-computer interface
8
high-complexity robot
8
robot swarm
8
high-complexity control
8
noninvasive measurements
8
interaction algorithm
8
system
6
high-complexity
5
bci
5

Similar Publications

Enhancing the performance of SSVEP-based BCIs by combining task-related component analysis and deep neural network.

Sci Rep

January 2025

Department of Biomedical Engineering, School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.

Steady-State Visually Evoked Potential (SSVEP) signals can be decoded by either a traditional machine learning algorithm or a deep learning network. Combining the two methods is expected to enhance the performance of an SSVEP-based brain-computer interface (BCI) by exploiting their advantages. However, an efficient strategy for integrating the two methods has not yet been established.

View Article and Find Full Text PDF

Adaptive deep feature representation learning for cross-subject EEG decoding.

BMC Bioinformatics

December 2024

College of Computer and Information Engineering/College of Artificial Intelligence, Nanjing Tech University, Nanjing, 210093, China.

Background: The collection of substantial amounts of electroencephalogram (EEG) data is typically time-consuming and labor-intensive, which adversely impacts the development of decoding models with strong generalizability, particularly when the available data is limited. Utilizing sufficient EEG data from other subjects to aid in modeling the target subject presents a potential solution, commonly referred to as domain adaptation. Most current domain adaptation techniques for EEG decoding primarily focus on learning shared feature representations through domain alignment strategies.

View Article and Find Full Text PDF

An fMRI study on the generalization of motor learning after brain actuated supernumerary robot training.

NPJ Sci Learn

December 2024

Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China.

Article Synopsis
  • Generalization is key in motor learning, yet research on BCI-actuated supernumerary robotic fingers (BCI-SRF) and their long-term neuroplastic effects is limited.
  • In a study with 20 right-handed participants, the BCI-SRF group showed a 350% improvement in finger opposition accuracy compared to the traditional finger group after 4 weeks of training.
  • This improvement was linked to increased functional connectivity in brain regions involved in motor control, suggesting that BCI-SRF training may enhance motor learning by reorganizing the sensorimotor network.
View Article and Find Full Text PDF

ESI-GAL: EEG source imaging-based trajectory estimation for grasp and lift task.

Comput Biol Med

December 2024

Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Bharti School of Telecommunication, Indian Institute of Technology Delhi, New Delhi 110016, India; Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi 110016, India. Electronic address:

Background: Electroencephalogram (EEG) signals-based motor kinematics prediction (MKP) has been an active area of research to develop Brain-computer interface (BCI) systems such as exosuits, prostheses, and rehabilitation devices. However, EEG source imaging (ESI) based kinematics prediction is sparsely explored in the literature.

Method: In this study, pre-movement EEG features are utilized to predict three-dimensional (3D) hand kinematics for the grasp-and-lift motor task.

View Article and Find Full Text PDF

An Unsupervised Feature Extraction Method based on CLSTM-AE for Accurate P300 Classification in Brain-Computer Interface Systems.

J Biomed Phys Eng

December 2024

Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Background: The P300 signal, an endogenous component of event-related potentials, is extracted from an electroencephalography signal and employed in Brain-computer Interface (BCI) devices.

Objective: The current study aimed to address challenges in extracting useful features from P300 components and detecting P300 through a hybrid unsupervised manner based on Convolutional Neural Network (CNN) and Long Short-term Memory (LSTM).

Material And Methods: In this cross-sectional study, CNN as a useful method for the P300 classification task emphasizes spatial characteristics of data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!