Background: Pharmacological interventions are the most used treatment for low back pain (LBP). Use of evidence from systematic reviews of the effects of pharmacological interventions for LBP published in the Cochrane Library, is limited by lack of a comprehensive overview.
Objectives: To summarise the evidence from Cochrane Reviews of the efficacy, effectiveness, and safety of systemic pharmacological interventions for adults with non-specific LBP.
Methods: The Cochrane Database of Systematic Reviews was searched from inception to 3 June 2021, to identify reviews of randomised controlled trials (RCTs) that investigated systemic pharmacological interventions for adults with non-specific LBP. Two authors independently assessed eligibility, extracted data, and assessed the quality of the reviews and certainty of the evidence using the AMSTAR 2 and GRADE tools. The review focused on placebo comparisons and the main outcomes were pain intensity, function, and safety.
Main Results: Seven Cochrane Reviews that included 103 studies (22,238 participants) were included. There is high confidence in the findings of five reviews, moderate confidence in one, and low confidence in the findings of another. The reviews reported data on six medicines or medicine classes: paracetamol, non-steroidal anti-inflammatory drugs (NSAIDs), muscle relaxants, benzodiazepines, opioids, and antidepressants. Three reviews included participants with acute or sub-acute LBP and five reviews included participants with chronic LBP. Acute LBP Paracetamol There was high-certainty evidence for no evidence of difference between paracetamol and placebo for reducing pain intensity (MD 0.49 on a 0 to 100 scale (higher scores indicate worse pain), 95% CI -1.99 to 2.97), reducing disability (MD 0.05 on a 0 to 24 scale (higher scores indicate worse disability), 95% CI -0.50 to 0.60), and increasing the risk of adverse events (RR 1.07, 95% CI 0.86 to 1.33). NSAIDs There was moderate-certainty evidence for a small between-group difference favouring NSAIDs compared to placebo at reducing pain intensity (MD -7.29 on a 0 to 100 scale (higher scores indicate worse pain), 95% CI -10.98 to -3.61), high-certainty evidence for a small between-group difference for reducing disability (MD -2.02 on a 0-24 scale (higher scores indicate worse disability), 95% CI -2.89 to -1.15), and very low-certainty evidence for no evidence of an increased risk of adverse events (RR 0.86, 95% CI 0. 63 to 1.18). Muscle relaxants and benzodiazepines There was moderate-certainty evidence for a small between-group difference favouring muscle relaxants compared to placebo for a higher chance of pain relief (RR 0.58, 95% CI 0.45 to 0.76), and higher chance of improving physical function (RR 0.55, 95% CI 0.40 to 0.77), and increased risk of adverse events (RR 1.50, 95% CI 1. 14 to 1.98). Opioids None of the included Cochrane Reviews aimed to identify evidence for acute LBP. Antidepressants No evidence was identified by the included reviews for acute LBP. Chronic LBP Paracetamol No evidence was identified by the included reviews for chronic LBP. NSAIDs There was low-certainty evidence for a small between-group difference favouring NSAIDs compared to placebo for reducing pain intensity (MD -6.97 on a 0 to 100 scale (higher scores indicate worse pain), 95% CI -10.74 to -3.19), reducing disability (MD -0.85 on a 0-24 scale (higher scores indicate worse disability), 95% CI -1.30 to -0.40), and no evidence of an increased risk of adverse events (RR 1.04, 95% CI -0.92 to 1.17), all at intermediate-term follow-up (> 3 months and ≤ 12 months postintervention). Muscle relaxants and benzodiazepines There was low-certainty evidence for a small between-group difference favouring benzodiazepines compared to placebo for a higher chance of pain relief (RR 0.71, 95% CI 0.54 to 0.93), and low-certainty evidence for no evidence of difference between muscle relaxants and placebo in the risk of adverse events (RR 1.02, 95% CI 0.67 to 1.57). Opioids There was high-certainty evidence for a small between-group difference favouring tapentadol compared to placebo at reducing pain intensity (MD -8.00 on a 0 to 100 scale (higher scores indicate worse pain), 95% CI -1.22 to -0.38), moderate-certainty evidence for a small between-group difference favouring strong opioids for reducing pain intensity (SMD -0.43, 95% CI -0.52 to -0.33), low-certainty evidence for a medium between-group difference favouring tramadol for reducing pain intensity (SMD -0.55, 95% CI -0.66 to -0.44) and very low-certainty evidence for a small between-group difference favouring buprenorphine for reducing pain intensity (SMD -0.41, 95% CI -0.57 to -0.26). There was moderate-certainty evidence for a small between-group difference favouring strong opioids compared to placebo for reducing disability (SMD -0.26, 95% CI -0.37 to -0.15), moderate-certainty evidence for a small between-group difference favouring tramadol for reducing disability (SMD -0.18, 95% CI -0.29 to -0.07), and low-certainty evidence for a small between-group difference favouring buprenorphine for reducing disability (SMD -0.14, 95% CI -0.53 to -0.25). There was low-certainty evidence for a small between-group difference for an increased risk of adverse events for opioids (all types) compared to placebo; nausea (RD 0.10, 95% CI 0.07 to 0.14), headaches (RD 0.03, 95% CI 0.01 to 0.05), constipation (RD 0.07, 95% CI 0.04 to 0.11), and dizziness (RD 0.08, 95% CI 0.05 to 0.11). Antidepressants There was low-certainty evidence for no evidence of difference for antidepressants (all types) compared to placebo for reducing pain intensity (SMD -0.04, 95% CI -0.25 to 0.17) and reducing disability (SMD -0.06, 95% CI -0.40 to 0.29).
Authors' Conclusions: We found no high- or moderate-certainty evidence that any investigated pharmacological intervention provided a large or medium effect on pain intensity for acute or chronic LBP compared to placebo. For acute LBP, we found moderate-certainty evidence that NSAIDs and muscle relaxants may provide a small effect on pain, and high-certainty evidence for no evidence of difference between paracetamol and placebo. For safety, we found very low- and high-certainty evidence for no evidence of difference with NSAIDs and paracetamol compared to placebo for the risk of adverse events, and moderate-certainty evidence that muscle relaxants may increase the risk of adverse events. For chronic LBP, we found low-certainty evidence that NSAIDs and very low- to high-certainty evidence that opioids may provide a small effect on pain. For safety, we found low-certainty evidence for no evidence of difference between NSAIDs and placebo for the risk of adverse events, and low-certainty evidence that opioids may increase the risk of adverse events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10072849 | PMC |
http://dx.doi.org/10.1002/14651858.CD013815.pub2 | DOI Listing |
Rheumatol Ther
January 2025
Biosplice Therapeutics, Inc., 9360 Towne Centre Dr, San Diego, CA, 92121, USA.
Introduction: Lorecivivint (LOR), a CDC-like kinase/dual-specificity tyrosine kinase (CLK/DYRK) inhibitor thought to modulate inflammatory and Wnt pathways, is being developed as a potential intra-articular knee osteoarthritis (OA) treatment. The objective of this trial was to evaluate long-term safety of LOR within an observational extension of two phase 2 trials.
Methods: This 60-month, observational extension study (NCT02951026) of a 12-month phase 2a trial (NCT02536833) and 6-month phase 2b trial (NCT03122860) was administratively closed after 36 months as data inferences became limited.
Cont Lens Anterior Eye
January 2025
Laboratory of Optometry and Vision Sciences, West China School of Medicine, Sichuan University, Chengdu, China; Department of Optometry and Vision Sciences, West China School of Medicine, Sichuan University, Chengdu, China.
Objective: To investigate changes in corneal astigmatism (curvatures and corneal sagittal height difference (C-sagDiff) at 8-mm chord) after temporary discontinuation from long-term spherical and toric orthokeratology (ortho-k) lens wear in a Chinese population.
Methods: Relevant data were retrieved from 110 patients (55 wearing spherical ortho-k lenses, 55 wearing toric ortho-k lenses) who have been undergoing ortho-k treatment for at least one year and stopped lens wear temporarily for scheduled lens replacement. The topographic and refraction data at baseline and post-discontinuation was collected for all the patients.
Behav Brain Res
January 2025
Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA, United States of America.
Background: Thalamocortical functional and structural connectivity alterations may contribute to clinical phenotype of Autism Spectrum Disorder. As previous studies focused mainly on thalamofrontal connections, we comprehensively investigated between-group differences of thalamic functional networks and white matter pathways projecting also to temporal, parietal, occipital lobes and their associations with core and co-occurring conditions of this population.
Methods: A total of 38 children (19 with Autism Spectrum Disorder) underwent magnetic resonance imaging and behavioral assessment.
J Eat Disord
January 2025
Centre for Research in Eating and Weight Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
Background: There is a need for improved understanding of why 20-30% of individuals with anorexia nervosa (AN) develop a severe and enduring form of illness (SE-AN). Previously, we reported differences in proactive inhibition (a pre-emptive slowing of responses) in individuals with AN compared to healthy controls (after controlling for intolerance of uncertainty). The present study is a preliminary exploration of proactive inhibition in which we compared women with SE-AN with healthy comparison (HC) women and explored its association with restrictive/avoidant eating behaviours.
View Article and Find Full Text PDFBMC Health Serv Res
January 2025
Department of Psychiatry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey.
Background: Many variables may affect approaches of psychiatrists to methamphetamine-associated psychotic disorder (MAP) treatment. This study was aimed to reach adult psychiatrists actively practicing in Turkey through an internet-based survey and to determine their practices and attitudes to MAP treatment.
Methods: In this internet-based study, participants were divided into three groups based on their answers: Those who do not follow-up any MAP patient were group 1 (n = 78), partially involved in the treatment process of at least one patient diagnosed with MAP were group 2 (n = 128), completely involved in the treatment process of at least one patient diagnosed with MAP were group 3 (n = 202).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!