Background: Superimposition of farfield (FF) and nearfield (NF) bipolar voltage electrograms (BVE) complicates the confirmation of pulmonary vein (PV) isolation after catheter ablation of atrial fibrillation. Our aim was to develop an automatic algorithm based on a single-beat analysis to discriminate PV NF from atrial FF BVE from a circular mapping catheter during the cryoballoon PV isolation.

Methods: During freezing cycles in cryoablation PVI, local NF and distant FF signals were recorded, identified and labelled. BVEs were classified using four different machine learning algorithms based on four frequency domain (high-frequency power (P), low-frequency power (P), relative high power band, P ratio of neighbouring electrodes) and two time domain features (amplitude (V), slew rate). The algorithm-based classification was compared to the true identification gained during the PVI and to a classification by cardiac electrophysiologists.

Results: We included 335 BVEs from 57 consecutive patients. Using a single feature, P with a cut-off at 150 Hz showed the best overall accuracy for classification (79.4%). By combining P with V, overall accuracy was improved to 82.7% with a specificity of 89% and a sensitivity of 77%. The overall accuracy was highest for the right inferior PV (96.6%) and lowest for the left superior PV (76.9%). The algorithm showed comparable accuracy to the classification by the EP specialists.

Conclusions: An automated farfield-nearfield discrimination based on two simple features from a single-beat BVE is feasible with a high specificity and comparable accuracy to the assessment by experienced cardiac electrophysiologists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10694100PMC
http://dx.doi.org/10.1007/s10840-023-01535-7DOI Listing

Publication Analysis

Top Keywords

farfield nearfield
8
nearfield bipolar
8
bipolar voltage
8
voltage electrograms
8
accuracy classification
8
comparable accuracy
8
accuracy
5
single-beat algorithm
4
algorithm discriminate
4
discriminate farfield
4

Similar Publications

A Review of Cascaded Metasurfaces for Advanced Integrated Devices.

Micromachines (Basel)

December 2024

State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China.

This paper reviews the field of cascaded metasurfaces, which are advanced optical devices formed by stacking or serially arranging multiple metasurface layers. These structures leverage near-field and far-field electromagnetic (EM) coupling mechanisms to enhance functionalities beyond single-layer metasurfaces. This review comprehensively discusses the physical principles, design methodologies, and applications of cascaded metasurfaces, focusing on both static and dynamic configurations.

View Article and Find Full Text PDF

Scaffolds are of great interest in tissue engineering associated with regenerative medicine owing to their ability to mimic biological structures and provide support for new tissue formation. Several techniques are used to produce biological scaffolds; among them, far-field electrospinning (FFES) process is widely used due to its versatility in producing promising structures similar to native tissues owing to the electrospun nanofibers. On the other hand, near-field electrospinning (NFES) has been investigated due to the possibility of creating scaffolds with suitable architecture for their use in specific biological tissues.

View Article and Find Full Text PDF

Nearfield observation of spin-orbit interactions at nanoscale using photoinduced force microscopy.

Sci Adv

December 2024

Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.

Optical spin and orbital angular momenta are intrinsic characteristics of light determined by its polarization and spatial degrees of freedom, respectively. At the nanoscale, sharply focused structured light carries coupled spin-orbital angular momenta with complex 3D nearfield structures, crucial for manipulating multidimensional information of light in nanophotonics. However, characterizing these interactions faces challenges with conventional farfield-based methods, which typically lack the essential accuracy and resolution to interrogate the structured nearfield with high fidelity.

View Article and Find Full Text PDF

Nowadays, metasurfaces have attracted considerable attention due to their promising and advanced control of electromagnetic (EM) waves. However, it is still challenging to shape guided waves into desired free-space mode, while simultaneously manipulating spatial incident waves using a single metasurface. Herein, a class of metasurfaces capable of multiplexing guided and space waves is proposed to achieve advanced EM functionalities in microwave regions, which can find great application potentials in radar systems, wireless communications, and wireless power transfer (WPT).

View Article and Find Full Text PDF

Surface angled cracks on critical components in high-speed machinery can lead to fractures under stress and pressure, posing a significant threat to the operational safety of equipment. To detect surface angled cracks on critical components, this paper proposes a "Quantitative Detection Method for Surface Angled Cracks Based on Full-field Scanning Data". By analyzing different ultrasonic signals in the full-field scanning data from laser ultrasonics, the width, angle, and length of surface angled cracks can be determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!