Senescence of the immune system is characterized by a state of chronic, subclinical, low-grade inflammation termed 'inflammaging', with increased levels of proinflammatory cytokines, both at the tissue and systemic levels. Age-related inflammation can be mainly driven by self-molecules with immunostimulant properties, named Damage/death Associated Molecular Patterns (DAMPs), released by dead, dying, injured cells or aged cells. Mitochondria are an important source of DAMPs, including mitochondrial DNA - the small, circular, double-stranded DNA molecule found in multiple copies in the organelle. mtDNA can be sensed by at least three molecules: the Toll-like receptor 9, the NLRP3 inflammasomes, and the cyclic GMP-AMP synthase (cGAS). All these sensors can lead to the release of proinflammatory cytokines when engaged. The release of mtDNA by damaged or necrotic cells has been observed in several pathological conditions, often aggravating the course of the disease. Several lines of evidence indicate that the impairment of mtDNA quality control and of the organelle homeostasis associated with aging determines an increase in the leakage of mtDNA from the organelle to the cytosol, from the cell to the extracellular space, and into plasma. This phenomenon, mirrored by an increase in mtDNA circulating levels in elderly people, can lead to the activation of different innate immune cell types, sustaining the chronic inflammatory status that is characteristic of aging.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BST20221010DOI Listing

Publication Analysis

Top Keywords

mitochondrial dna
8
proinflammatory cytokines
8
mtdna
5
dna inflammatory
4
inflammatory damp
4
damp warning
4
warning aging
4
aging immune
4
immune system?
4
system? senescence
4

Similar Publications

Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.

Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci.

View Article and Find Full Text PDF

Robust discrimination between closely related species of salmon based on DNA fragments.

Anal Bioanal Chem

January 2025

Statistical Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899-8980, USA.

Closely related species of Salmonidae, including Pacific and Atlantic salmon, can be distinguished from one another based on nucleotide sequences from the cytochrome c oxidase sub-unit 1 mitochondrial gene (COI), using ensembles of fragments aligned to genetic barcodes that serve as digital proxies for the relevant species. This is accomplished by exploiting both the nucleotide sequences and their quality scores recorded in a FASTQ file obtained via Next Generation (NextGen) Sequencing of mitochondrial DNA extracted from Coho salmon caught with hook and line in the Gulf of Alaska. The alignment is done using MUSCLE (Muscle 5.

View Article and Find Full Text PDF

Sengers Syndrome (SS) is a rare autosomal recessive mitochondrial disorder caused by mutations in the acylglycerol kinase (AGK) gene on chromosome 7, also known as cardiomyopathic mitochondrial DNA depletion syndrome (MTDPS10). This disorder disrupts mitochondrial DNA function and energy metabolism, presenting with symptoms such as congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. Previous research has shown SS affects oxidative phosphorylation and mitochondrial respiration, implicating the TIM22 complex and carrier import.

View Article and Find Full Text PDF

Discovery of novel dual tubulin and MMPs inhibitors for the treatment of lung cancer and overcoming drug resistance.

Eur J Med Chem

January 2025

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Institute of Green Chemistry and Process Enhancement Technology, Huaiyin Institute of Technology, Huai'an, 223003, China. Electronic address:

Nowadays, hybrid molecule with dual targets activity or effect is regarded as an effective strategy for combating the drug resistance development in cancer therapy. Herein, novel of bifunctional conjugates targeting tubulin and MMPs inhibitors were synthesized. Among them, 15j exhibited robust anticancer activity in vitro and in vivo, with IC values of 0.

View Article and Find Full Text PDF

Mitochondrial Mayhem: How cigarette smoke induces placental dysfunction through MMS19 degradation.

Ecotoxicol Environ Saf

January 2025

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China. Electronic address:

Cigarette smoke (CS) has detrimental effects on placental growth and embryo development, but the underlying mechanisms remain unclear. This study aims to investigate the impact of CS on trophoblast cell proliferation and regulated cell death (RCD) by examining its interference with iron-sulfur cluster (ISC) proteins and the CIA pathway. Exposure to CS disrupted the cytosolic ISC assembly (CIA) pathway, downregulated ISC proteins, and decreased ISC maturation in the placenta of rats exposed to passive smoking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!