Background: Pesticides are indispensable in agriculture and can effectively improve the yields and quality of crops. Due to their weak water solubility, most pesticides need to be dissolved by adding solubilizing adjuvants. In this work, based on molecular recognition of the macrocyclic host, we developed a novel supramolecular adjuvant, called sulfonated azocalix[4]arene (SAC4A), which significantly improves the water solubility of pesticides.
Results: SAC4A presents multiple advantages, including high water solubility, strong binding affinity, universality, and simple preparation. SAC4A showed an average binding constant value of 1.66 × 10 M for 25 pesticides. Phase solubility results indicated that SAC4A increased the water solubility of pesticides by 80-1310 times. The herbicidal, fungicidal, and insecticidal activities of supramolecular formulations were found to be superior to those of technical pesticides, and the herbicidal effects were even better than those of commercial formulations.
Conclusion: Overall results revealed the potential of SAC4A to improve the solubility and effectiveness of pesticides, providing a new development idea for the application of adjuvants in agriculture. © 2023 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.7492 | DOI Listing |
Background: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).
Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.
Small
January 2025
School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China.
The development of efficient hydrogen evolution reaction (HER) catalysts is crucial for water electrolysis. Currently, Ru-based catalysts are considered top contenders, but issues with stability, activity, and cost remain. In this work, RuNi alloys possessing a solid solution structure within the Ru lattice are prepared via straightforward electrodeposition on various substrates and assessed as HER catalysts in alkaline media.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia.
Water scarcity is a foremost environmental concern and is expected to hasten in the forthcoming years due to severe fluctuations in weather patterns worldwide. The present work was designed to explore the potential role of alpha-tocopherol (α-Toc), a form of vitamin E, on the morphological, physio-biochemical, and cellular antioxidant responses of two radish genotypes grown under drought conditions (38 ± 3% of field capacity). The individual and combined applications of α-Toc (100 ppm) were used as T0- Control, T1- Control + TF (TF-alpha-tocopherol), T2- Drought (D), and T3- D + TF with three replications.
View Article and Find Full Text PDFNature
January 2025
School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia.
The cratonic crust contains abundant mineral deposits of metals such as gold, copper and rare earths and is underlain by a thick mantle lithosphere rich in the volatiles carbon, sulfur and water. Although volatiles are known to be key components in metallogenesis, how and where they are distributed in the cratonic lithosphere mantle and their role in the initial enrichment of metals have not been sufficiently explored. Here we compile sulfur and copper contents of global cratonic peridotites, identifying sulfide-rich and copper-rich continental roots at depths of 160-190 km at cratonic margins.
View Article and Find Full Text PDFSci Rep
January 2025
Plant Production Department, College of Food and Agriculture Sciences, King Saud University, 11451, Riyadh, Saudi Arabia.
Maize (Zea mays L.) faces significant challenges to its growth and productivity from heavy metal stress, particularly Chromium (Cr) stress, which induces reactive oxygen species (ROS) generation and damages photosynthetic tissues. This study aimed to investigate the effects of fulvic acid (FA) application, via foliar spray or root irrigation, on mitigating chromium stress in maize by evaluating its impact on antioxidant activity and growth parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!