A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Antagonizing apolipoprotein J chaperone promotes proteasomal degradation of mTOR and relieves hepatic lipid deposition. | LitMetric

Background And Aims: Overnutrition-induced activation of mammalian target of rapamycin (mTOR) dysregulates intracellular lipid metabolism and contributes to hepatic lipid deposition. Apolipoprotein J (ApoJ) is a molecular chaperone and participates in pathogen-induced and nutrient-induced lipid accumulation. This study investigates the mechanism of ApoJ-regulated ubiquitin-proteasomal degradation of mTOR, and a proof-of-concept ApoJ antagonist peptide is proposed to relieve hepatic steatosis.

Approach And Results: By using omics approaches, upregulation of ApoJ was found in high-fat medium-fed hepatocytes and livers of patients with NAFLD. Hepatic ApoJ level associated with the levels of mTOR and protein markers of autophagy and correlated positively with lipid contents in the liver of mice. Functionally, nonsecreted intracellular ApoJ bound to mTOR kinase domain and prevented mTOR ubiquitination by interfering FBW7 ubiquitin ligase interaction through its R324 residue. In vitro and in vivo gain-of-function or loss-of-function analysis further demonstrated that targeting ApoJ promotes proteasomal degradation of mTOR, restores lipophagy and lysosomal activity, thus prevents hepatic lipid deposition. Moreover, an antagonist peptide with a dissociation constant (Kd) of 2.54 µM interacted with stress-induced ApoJ and improved hepatic pathology, serum lipid and glucose homeostasis, and insulin sensitivity in mice with NAFLD or type II diabetes mellitus.

Conclusions: ApoJ antagonist peptide might be a potential therapeutic against lipid-associated metabolic disorders through restoring mTOR and FBW7 interaction and facilitating ubiquitin-proteasomal degradation of mTOR.

Download full-text PDF

Source
http://dx.doi.org/10.1097/HEP.0000000000000185DOI Listing

Publication Analysis

Top Keywords

degradation mtor
16
hepatic lipid
12
lipid deposition
12
antagonist peptide
12
mtor
9
promotes proteasomal
8
proteasomal degradation
8
apoj
8
ubiquitin-proteasomal degradation
8
apoj antagonist
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!