Design and measurement of the TE mode generator.

Rev Sci Instrum

School of Electronic and Information Engineering, Beihang University, Beijing 100191, China.

Published: March 2023

The high-mode generator is a passive device operating at low power, which is helpful for the mode converter test. It has generally served as the input of the mode converter to evaluate the performance. Here, we realized the design of the TE mode generator. The multi-section coaxial resonator was designed to improve the TE mode purity. Two mirrors were used to excite the TE mode resonance based on the geometric optics. The construction of the TE mode generator was realized. The purity of the measured TE mode was 91%, which was in good agreement with the theory.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0134767DOI Listing

Publication Analysis

Top Keywords

mode generator
12
mode
8
mode converter
8
design measurement
4
measurement mode
4
generator
4
generator high-mode
4
high-mode generator
4
generator passive
4
passive device
4

Similar Publications

Default mode network functional connectivity as a transdiagnostic biomarker of cognitive function.

Biol Psychiatry Cogn Neurosci Neuroimaging

January 2025

Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Brain and Cognitive Science at the McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Psychology, Northeastern University. Electronic address:

The default mode network (DMN) is intricately linked with processes such as self-referential thinking, episodic memory recall, goal-directed cognition, self-projection, and theory of mind. Over recent years, there has been a surge in examining its functional connectivity, particularly its relationship with frontoparietal networks (FPN) involved in top-down attention, executive function, and cognitive control. The fluidity in switching between these internal and external modes of processing-highlighted by anti-correlated functional connectivity-has been proposed as an indicator of cognitive health.

View Article and Find Full Text PDF

Degeneration of the nucleus pulposus affects the internal volumetric strains and failure location of adjacent human metastatic vertebral bodies.

Acta Biomater

January 2025

Department of Industrial Engineering, School of Engineering and Architecture, University of Bologna, Viale del Risorgimento 2, 40136, Bologna, Italy. Electronic address:

Intervertebral disc (IVD) degeneration is suspected to affect the distribution of stress and strain near the vertebral endplates and in the underlying bone. This scenario is worsened by the presence of metastatic lesions on the vertebrae (primarily thoracic vertebrae (60-80%)) which increase the risk of fracture. As such, this study aimed to evaluate the effect of IVD degeneration on the internal volumetric strains and failure modes of human metastatic vertebral bodies.

View Article and Find Full Text PDF

Novel archaeal ribosome dimerization factor facilitating unique 30S-30S dimerization.

Nucleic Acids Res

January 2025

Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.

Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress.

View Article and Find Full Text PDF

Background: Exosomes are extracellular vesicles, composed of a phospholipid bilayer, that are primarily derived from stem cells. The contents of exosomes can be incorporated into the tissue in which they are introduced, which presents a unique therapeutic option.

Aims: Exosomes have been investigated as a treatment for a number of medical ailments, but the literature supporting these indications is inconclusive.

View Article and Find Full Text PDF

The directivity of the quasi-static component (QSC) is quantitatively investigated for evaluating the orientation of a micro-crack buried in a thin solid plate using the numerical simulation method. Based on the bilinear stress-strain constitutive model, a three-dimensional (3D) finite element model (FEM) is built for investigating the nonlinear interaction between primary Lamb waves and the micro-crack. When the primary Lamb waves at A0 mode impinge on the micro-crack, under the modulation of the contact acoustic nonlinearity (CAN), the micro-crack itself will induce QSC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!