Objectives: The aim of the study was to evaluate the association between the radiomics-based intratumoral heterogeneity (ITH) and the recurrence risk in hepatocellular carcinoma (HCC) patients after liver transplantation (LT), and to assess its incremental to the Milan, University of California San Francisco (UCSF), Metro-Ticket 2.0, and Hangzhou criteria.
Methods: A multicenter cohort of 196 HCC patients were investigated. The endpoint was recurrence-free survival (RFS) after LT. A CT-based radiomics signature (RS) was constructed and assessed in the whole cohort and in the subgroups stratified by the Milan, UCSF, Metro-Ticket 2.0, and Hangzhou criteria. The R-Milan, R-UCSF, R-Metro-Ticket 2.0, and R-Hangzhou nomograms which combined RS and the four existing risk criteria were developed respectively. The incremental value of RS to the four existing risk criteria in RFS prediction was evaluated.
Results: RS was significantly associated with RFS in the training and test cohorts as well as in the subgroups stratified by the existing risk criteria. The four combined nomograms showed better predictive capability than the existing risk criteria did with higher C-indices (R-Milan [training/test] vs. Milan, 0.745/0.765 vs. 0.677; R-USCF vs. USCF, 0.748/0.767 vs. 0.675; R-Metro-Ticket 2.0 vs. Metro-Ticket 2.0, 0.756/0.783 vs. 0.670; R-Hangzhou vs. Hangzhou, 0.751/0.760 vs. 0.691) and higher clinical net benefit.
Conclusions: The radiomics-based ITH can predict outcomes and provide incremental value to the existing risk criteria in HCC patients after LT. Incorporating radiomics-based ITH in HCC risk criteria may facilitate candidate selection, surveillance, and adjuvant trial design.
Key Points: • Milan, USCF, Metro-Ticket 2.0, and Hangzhou criteria may be insufficient for outcome prediction in HCC after LT. • Radiomics allows for the characterization of tumor heterogeneity. • Radiomics adds incremental value to the existing criteria in outcome prediction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-023-09591-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!