Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The vegetation uptake of atmospheric elemental mercury [Hg(0)] and its subsequent littering are critical processes of the terrestrial Hg cycles. There is a large uncertainty in the estimated global fluxes of these processes due to the knowledge gap in the underlying mechanisms and their relationship with environmental factors. Here, we develop a new global model based on the Community Land Model Version 5 (CLM5-Hg) as an independent component of the Community Earth System Model 2 (CESM2). We explore the global pattern of gaseous elemental Hg [Hg(0)] uptake by vegetation and the spatial distribution of litter Hg concentration constrained by observed datasets as well as its driving mechanism. The annual vegetation uptake of Hg(0) is estimated as 3132 Mg yr, which is considerably higher than previous global models. The scheme of dynamic plant growth including stomatal activities substantially improves the estimation for global terrestrial distribution of Hg, compared to the leaf area index (LAI) based scheme that is often used by previous models. We find the global distribution of litter Hg concentrations driven by vegetation uptake of atmospheric Hg(0), which are simulated to be higher in East Asia (87 ng/g) than in the Amazon region (63 ng/g). Meanwhile, as a significant source for litter Hg, the formation of structural litter (cellulose litter + lignin litter) results in a lagging effect between Hg(0) deposition and litter Hg concentration, implying the buffering effect of vegetation on the air-land exchange of Hg. This work highlights the importance of vegetation physiology and environmental factors in understanding the vegetation sequestration of atmospheric Hg globally, and calls for greater efforts to protect forests and afforestation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2023.107904 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!