Introduction: The number of people with diabetes mellitus is increasing globally and consequently so too is diabetic retinopathy (DR). Most patients with diabetes are monitored through the diabetic eye screening programme (DESP) until they have signs of retinopathy and these changes progress, requiring referral into hospital eye services (HES). Here, they continue to be monitored until they require treatment. Due to current pressures on HES, delays can occur, leading to harm. There is a need to triage patients based on their individual risk. At present, patients are stratified according to retinopathy stage alone, yet other risk factors like glycated haemoglobin (HbA1c) may be useful. Therefore, a prediction model that combines multiple prognostic factors to predict progression will be useful for triage in this setting to improve care.We previously developed a Diabetic Retinopathy Progression model to Treatment or Vision Loss (DRPTVL-UK) using a large primary care database. The aim of the present study is to externally validate the DRPTVL-UK model in a secondary care setting, specifically in a population under care by HES. This study will also provide an opportunity to update the model by considering additional predictors not previously available.
Methods And Analysis: We will use a retrospective cohort of 2400 patients with diabetes aged 12 years and over, referred from DESP to the NHS hospital trusts with referable DR between 2013 and 2016, with follow-up information recorded until December 2021.We will evaluate the external validity of the DRPTVL-UK model using measures of discrimination, calibration and net benefit. In addition, consensus meetings will be held to agree on acceptable risk thresholds for triage within the HES system.
Ethics And Dissemination: This study was approved by REC (ref 22/SC/0425, 05/12/2022, Hampshire A Research Ethics Committee). The results of the study will be published in a peer-reviewed journal, presented at clinical conferences.
Trial Registration Number: ISRCTN 10956293.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10083856 | PMC |
http://dx.doi.org/10.1136/bmjopen-2023-073015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!