Significance of glycans in cellulolytic enzymes for lignocellulosic biorefinery - A review.

Bioresour Technol

Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India. Electronic address:

Published: July 2023

Lignocellulosic (LC) biomass is the most abundant renewable resource for mankind gravitating society towards sustainable solution for energy that can reduce the carbon footprint. The economic feasibility of 'biomass biorefinery' depends upon the efficiency cellulolytic enzymes which is the main crux. Its high production cost and low efficiencies are the major limitations, that need to be resolved. As the complexity of the genome increases, so does the complexity of the proteome, further facilitated by protein post-translational modifications (PTMs). Glycosylation is regarded the major PTMs and hardly any recent work is focused on importance of glycosylation in cellulase. By modifying protein side chains and glycans, superior cellulases with improved stability and efficiency can be obtained. Functional proteomics relies heavily on PTMs because they regulate activity, localization, and interactions with protein, lipid, nucleic acid, and cofactor molecules. O- and N- glycosylation in cellulases influences its characteristics adding positive attributes to the enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.128992DOI Listing

Publication Analysis

Top Keywords

cellulolytic enzymes
8
significance glycans
4
glycans cellulolytic
4
enzymes lignocellulosic
4
lignocellulosic biorefinery
4
biorefinery review
4
review lignocellulosic
4
lignocellulosic biomass
4
biomass abundant
4
abundant renewable
4

Similar Publications

Isolation and screening of wood-decaying fungi for lignocellulolytic enzyme production and bioremediation processes.

Front Fungal Biol

December 2024

Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia.

The growing demand for novel enzyme producers to meet industrial and environmental needs has driven interest in lignocellulose-degrading fungi. In this study, lignocellulolytic enzyme production capabilities of environmental fungal isolates collected from boreal coniferous and nemoral summer green deciduous forests were investigated, using Congo Red, ABTS, and Azure B as indicators of cellulolytic and ligninolytic enzyme productions. Through qualitative and quantitative assays, the study aimed to identify promising species for lignocellulose-degrading enzyme secretion and assess their potential for biotechnological applications.

View Article and Find Full Text PDF

Cutting-edge advances in strain and process engineering for boosting cellulase production in Trichoderma reesei.

Bioresour Technol

December 2024

Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, People's Republic of China; Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada. Electronic address:

Low-cost production of cellulases is a key factor in advancing the commercialization of lignocellulosic biorefinery. Thus far, Trichoderma reesei is the leading cellulase producer for biorefinery applications. Over 70 years of research, considerable advancements have been made in comprehending the mechanisms underlying cellulases biosynthesis and secretion in T.

View Article and Find Full Text PDF

β-glucosidases (BGLs) are key enzymes in the depolymerization of cellulosic biomass, catalyzing the conversion of cello-oligosaccharides into glucose. This conversion is pivotal for enhancing the production of second-generation ethanol or other value-added products in biorefineries. However, the process is often cost-prohibitive due to the high enzyme loadings required.

View Article and Find Full Text PDF

Functional and Genomic Insights into the Biotechnological Potential of Vibrio spp. Isolated from Deeply Polluted and Pristine Environments.

Curr Microbiol

December 2024

Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, RJ, 21941-902, Brazil.

Article Synopsis
  • Vibrio spp. are diverse bacteria with promising applications in biotechnology, particularly in antibiotic resistance and the production of useful compounds.
  • The study isolated 18 Vibrio strains from two different marine environments, including polluted urban settings and isolated volcanic regions, to explore their industrial applications.
  • Results showed multiple strains had antimicrobial properties and could produce bioemulsifiers, alongside genetic insights into their enzymatic capabilities, underscoring their potential as valuable sources for high-value bioproducts.
View Article and Find Full Text PDF

Teredinibacter turnerae is a cultivable cellulolytic Gammaproteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose and pectin and contribute to wood (lignocellulose) digestion in the shipworm gut.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!