Iron/iron carbide coupled with S, N co-doped porous carbon as effective oxygen reduction reaction catalyst for microbial fuel cells.

Environ Res

Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China. Electronic address:

Published: July 2023

As a novel energy device, microbial fuel cells (MFCs) have attracted much attention for their dual functions of electricity generation and sewage treatment. However, the sluggish oxygen reduction reaction (ORR) kinetic on the cathode have hindered the practical application of MFCs. In this work, metallic organic framework derived carbon framework co-doped by Fe, S, N tri-elements was used as alternative electrocatalyst to the conventional Pt/C cathode catalyst in pH-universal electrolytes. The amount of thiosemicarbazide from 0.3 to 3 g determined the surface chemical property, and therefore the ORR activity of FeSNC catalysts. The sulfur/nitrogen doping and Fe/FeC embedded in carbon shell was characterized by X-ray photoelectron spectroscopy and transmission electron microscopy. The synergy of iron salt and thiosemicarbazide contributed to the improvement of nitrogen and sulfur doping. Sulfur atoms were successfully doped into the carbon matrix and formed a certain amount of thiophene- and oxidized-sulfur. The optimal FeSNC-3 catalyst synthesized with 1.5 g of thiosemicarbazide exhibited the highest ORR activity with a positive half wave potential of 0.866 V in alkaline and 0.691 V (vs. Reversible Hydrogen Electrode) in neutral electrolyte, which both outperformed the commercial Pt/C catalyst. However, as the amount of thiosemicarbazide surpassed 1.5 g, the catalytic performance of FeSNC-4 was lowered, and this could be assigned to the decreased defects and low specific surface area. The excellent ORR performance in neutral medium urged FeSNC-3 as good cathode catalyst in single chambered MFC (SCMFC). It showed the highest maximum power density of 2126 ± 100 mW m, excellent output stability of 8.14% decline in 550 h, chemical oxygen demand removal of 90.7 ± 1.6% and coulombic efficiency of 12.5 ± 1.1%, all superior to those of benchmark SCMFC-Pt/C (1637 ± 35 mW m, 15.4%, 88.9 ± 0.9%, and 10.2 ± 1.1%). These outstanding results were associated to the large specific surface area and synergistic interaction of multiple active sites, like Fe/FeC, Fe-N, pyridinic N, graphite N and thiophene-S.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.115808DOI Listing

Publication Analysis

Top Keywords

oxygen reduction
8
reduction reaction
8
microbial fuel
8
fuel cells
8
cathode catalyst
8
amount thiosemicarbazide
8
orr activity
8
specific surface
8
surface area
8
catalyst
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!