The structural maintenance of therapeutic proteins during formulation and/or storage is a critical aspect, particularly for multi-domain and/or multimeric proteins which usually exhibit intrinsic structural dynamics leading to aggregation with concomitant loss-of-function. Protein freeze-drying is a widely used technique to preserve protein structure and function during storage. To minimize chemical/physical stresses occurring during this process, protein stabilizers are usually included, their effect being strongly dependent on the target protein. Therefore, they should be screened for on a time-consuming case-by-case basis. Herein, differential scanning fluorimetry (DSF) and isothermal denaturation fluorimetry (ITDF) were employed to screen, among different classes of freeze-drying additives, for the most effective stabilizer of the model protein human phenylalanine hydroxylase (hPAH). Correlation studies among retrieved DSF and ITDF parameters with recovered enzyme amount and activity indicated ITDF as the most appropriate screening method. Biochemical and biophysical characterization of hPAH freeze-dried with ITDF-selected stabilizers and a long-term storage study (12 months, 5 ± 3 °C) showed that the selected compounds prevented protein aggregation and preserved hPAH structural and functional properties throughout time storage. Our results provide a solid basis towards the choice of ITDF as a high-throughput screening step for the identification of protein freeze-drying protectors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2023.03.012 | DOI Listing |
Foods
January 2025
Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
Beetroots are one of the primary sources of betalains, nitrogenous pigments with anti-inflammatory and antioxidant properties. However, due to their chemical instability, betalains have limited use in food applications. This work investigated whether betalains encapsulated in chickpea protein could be stabilized and delivered in a shelf-stable format.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia.
Fibrous by-products, including defective or double cocoons, are obtained during silk processing. These cocoons primarily contain fibroin and sericin (SS) proteins along with minor amounts of wax and mineral salts. In conventional textile processes, SS is removed in the production of smooth, lustrous silk threads, and is typically discarded.
View Article and Find Full Text PDFFood Res Int
February 2025
Food Science and Nutrition Department, University of Minnesota, 1334 Eckles Ave, Saint Paul, MN, 55108, United States. Electronic address:
There is an ever-increasing demand for novel plant proteins that are non-allergenic, nutritionally complete, adequately functional, and can be sustainably sourced. RuBisCo is a protein that fulfills these requirements and can be sourced from alfalfa (Medicago sativa). Therefore, this study investigated several techniques to adequately extract alfalfa protein.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China.
Nucleic acid testing is the most effective detection method currently available for the diagnosis of respiratory infectious diseases. However, the conventional real-time fluorescent quantitative PCR technique, which is regarded as the gold standard method for nucleic acid detection, presents significant challenges for implementation in home self-testing and popularization in underdeveloped regions due to its rigorous experimental standards. It is therefore clear that an easy-to-use, miniaturized nucleic acid testing technology and products for nonprofessionals are of great necessity to define the pathogens and assist in controlling disease transmission.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir 190025, India.
Encapsulation technology is a suitable tool to protect probiotics in carrier food products and gastrointestinal tract. In the current investigation, the potential of gum arabic, soy protein isolate and their blend as wall material for the encapsulation of five Lactobacillus spp. viz.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!