ABCG2 is an ATP-binding cassette efflux transporter that is expressed in absorptive and excretory organs such as liver, intestine, kidney, brain and testis where it plays a crucial physiological and toxicological role in protecting cells against xenobiotics, affecting pharmacokinetics of its substrates. In addition, the induction of ABCG2 expression in mammary gland during lactation is related to active secretion of many toxicants into milk. In this study, the in vitro interactions between ABCG2 and three pesticides flupyradifurone, bupirimate and its metabolite ethirimol were investigated to check whether these compounds are substrates and/or inhibitors of this transporter. Using in vitro transepithelial assays with cells transduced with murine, ovine and human ABCG2, we showed that ethirimol and flupyradifurone were transported efficiently by murine Abcg2 and ovine ABCG2 but not by human ABCG2. Bupirimate was not found to be an in vitro substrate of ABCG2 transporter. Accumulation assays using mitoxantrone in transduced MDCK-II cells suggest that none of the tested pesticides were efficient ABCG2 inhibitors, at least in our experimental conditions. Our studies disclose that ethirimol and flupyradifurone are in vitro substrates of murine and ovine ABCG2, opening the possibility of a potential relevance of ABCG2 in the toxicokinetics of these pesticides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2023.03.012 | DOI Listing |
J Mater Chem B
January 2025
Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Ibaraki 305-0044, Japan.
The colon possesses a unique physiological environment among human organs, where there is a highly viscous body fluid layer called the mucus layer above colonic epithelial cells. Dysfunction of the mucus layer not only contributes to the occurrence of colorectal cancer (CRC) but also plays an important role in the development of chemoresistance in CRC. Although viscosity is an essential property of the mucus layer, it remains elusive how viscosity affects chemoresistance in colon cancer cells.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Departamento de Biología Molecular y Genómica y Departamento de Disciplinas Filosófico Metodológicas e Instrumentales. Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México.
ABCG2 transporter protein is one of several markers of prostate cancer stem cells (PCSCs). Gene variants of ABCG2 could affect protein expression, function, or both. The aim of this study was to identify the genetic variability of the ABCG2 gene in Mexican patients with prostate cancer.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-Princesa), 28006 Madrid, Spain.
Statins are the primary drugs used to prevent cardiovascular disease by inhibiting the HMG-CoA reductase, an enzyme crucial for the synthesis of LDL cholesterol in the liver. A significant number of patients experience adverse drug reactions (ADRs), particularly musculoskeletal problems, which can affect adherence to treatment. Recent clinical guidelines, such as those from the Clinical Pharmacogenetics Implementation Consortium (CPIC) in 2022, recommend adjusting rosuvastatin doses based on genetic variations in the and genes to minimize ADRs and improve treatment efficacy.
View Article and Find Full Text PDFMol Divers
January 2025
Data Science, Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, India.
The ATP-binding cassette transporter superfamily plays a pivotal role in cellular detoxification and drug efflux. ATP-binding cassette subfamily G member 2 (ABCG2) referred to as the Breast cancer resistance protein has emerged as a key member involved in multidrug resistance displayed by cancer cells. Understanding the molecular basis of substrate and inhibitor recognition, and binding within the transmembrane domain of ABCG2 is crucial for the development of effective therapeutic strategies.
View Article and Find Full Text PDFBMC Cancer
January 2025
School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P.R. China.
Background: ABCB1 overexpression is a key factor in causing multidrug resistance (MDR). As a result, it is crucial to discover effective medications against ABCB1 to overcome MDR. Falnidamol, a tyrosine kinase inhibitor (TKI) targeting the epidermal growth factor receptor (EGFR), is currently in phase 1 clinical trials for the treatment of solid tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!