Plastics are the most widely discharged waste into the aquatic ecosystems, where they break down into microplastics (MPs) and nanoplastics (NPs). MPs are ingested by several marine organisms, including benthic and pelagic fish species, contributing to organ damage and bioaccumulation. This study aimed to assess the effects of MPs ingestion on gut innate immunity and barrier integrity in gilthead seabreams (Sparus aurataLinnaeus, 1758) fed for 21 days with a diet enriched with polystyrene (PS-MPs; 1-20 μm; 0, 25 or 250 mg /kg b.w./die). Physiological fish growth and health status were not impacted by PS-MPs treatments at the end of experimental period. Inflammation and immune alterations were revealed by molecular analyses in both anterior (AI) and posterior intestine (PI) and were confirmed by histological evaluation. PS-MPs triggered TLR-Myd88 signaling pathway with following impairment of cytokines release. Specifically, PS-MPs increased pro-inflammatory cytokines gene expression (i.e., IL-1β, IL-6 and COX-2) and decreased anti-inflammatory ones (i.e., IL-10). Moreover, PS-MPs also induced an increase in other immune-associated genes, such as Lys, CSF1R and ALP. TLR-Myd88 signaling pathway may also lead to the mitogen-activated protein kinases (MAPK) signaling pathway activation. Here, MAPK (i.e., p38 and ERK) were activated by PS-MPs in PI, following the disruption of intestinal epithelial integrity, as evidenced by reduced gene expression of tight junctions (i.e. ZO-1, Cldn15, Occludin, and Tricellulin), integrins (i.e., Itgb6) and mucins (i.e., Muc2-like and Muc13-like). Thus, all the obtained results suggest that the subchronic oral exposure to PS-MPs induces inflammatory and immune alterations as well as an impact on intestinal functional integrity in gilthead seabream, with a more evident effect in PI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.163201DOI Listing

Publication Analysis

Top Keywords

signaling pathway
12
gilthead seabream
8
inflammatory immune
8
anterior posterior
8
posterior intestine
8
integrity gilthead
8
immune alterations
8
tlr-myd88 signaling
8
gene expression
8
ps-mps
7

Similar Publications

Pharmacological Management of IgG4-Related Disease: From Traditional to Mechanism-Based Targeted Therapies.

Drugs Aging

January 2025

Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.

IgG4-related disease (IgG4-RD) is an immune-mediated disorder characterized by organ enlargement and dysfunction. The formation of tertiary lymphoid tissues (TLTs) in affected organs is crucial for understanding IgG4-RD, as T follicular helper (Tfh) 2 cells within TLTs drive IgG4+B cell differentiation, contributing to mass formation. Key cytokines IL-4 and IL-10, produced by Tfh2 cells, are essential for this process.

View Article and Find Full Text PDF

Chrysoeriol: a natural RANKL inhibitor targeting osteoclastogenesis and ROS regulation for osteoporosis therapy.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.

Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.

View Article and Find Full Text PDF

The intestinal barrier function is a critical defense mechanism in the human body, serving as both the primary target and initiating organ in cases of sepsis. Preserving the integrity of this barrier is essential for preventing complications and diseases, including sepsis and mortality. Despite this importance, the impact of resveratrol on intestinal barrier function remains unclear.

View Article and Find Full Text PDF

Cholangiocarcinoma (CCA), a highly aggressive form of cancer, is known for its high mortality rate. A Disintegrin and Metalloprotease Domain-like Protein Decysin-1 (ADAMDEC1) can promote the development and metastasis in various tumors by degrading the extracellular matrix. However, its regulatory mechanism in CCA remains unclear.

View Article and Find Full Text PDF

Metabolic reprogramming induced by PSMA4 overexpression facilitates bortezomib resistance in multiple myeloma.

Ann Hematol

January 2025

Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China.

Multiple myeloma(MM) remains incurable with high relapse and chemoresistance rates. Differentially expressed genes(DEGs) between newly diagnosed myeloma and secondary plasma cell leukemia(sPCL) were subjected to a weighted gene co-expression network analysis(WGCNA). Drug resistant myeloma cell lines were established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!